(NASA-CR-190276) [REPORTS ON COMPUTER N?2-24540
GRAPHICS TESTBED TO SIMULATFE AND TEST VISION == THRU-~
3YSTEMS FOR SPACE APPLICATIDNS] Annual N32-24543
Status Reports (Research Inst. for Unclas
Computing and Information Systems) 126 p G3/61 0086905

STATUS REPORTS:

. B T - st TR

1) March 1988
—J.B. Cheatham, Jr., C.K. Wu and Y.H. Lin

2) March 1990
J.B. Cheatham, Jr.

3) July 1991
J.B. Cheatham, Jr.

Department of Mechanical Engineering and Materials Science
Rice University

Cooperative Agreement NCC 9-16

Research Activity No. AL.Q2:
A Computer Graphics Testbed to Simulate and Test Vision System for Space Applications

MASA Jchnson Epace Center
Informaotion Systems Directorste
Informaticn Technology Division

S =P
EHCLE

Research Institute for Computing and Information Systems
University of Houston-Clear Lake

INTERIM REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS} in 1986 to encourage the NASA
Johnson Space Center (JSC} and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
programofresearch in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with ULICL beginning in May 1986, to jointly plan and execute such rescarch
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
compuiing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate rescarch
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway afliliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research and education programs, while other rescarch
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-

"~ “tion sciences. RICIS, working jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UIICL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. John B. Cheatham Jr., Professor of
Mechanical Engineering, Rice University. Dr. Terry Feagin served as RICIS research
coordinator.

Funding was provided by the Information Systems Directorate, Information
Technology Division, NASA/JSC through Cooperative Agreement NCC 9-16 between
the NASA Johnson Space Center and the University of Houston-Clear Lake. The
NASA technical monitor for this research activity was Dr. Timothy F. Cleghorn of the
Information Technology Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.

'N92-24541
ANNUAL REPORT

TO

RESEARCH INSTITUTE FOR
COMPUTING AND INFORMATION SYSTEMS

(RICIS)

ON

COMPUTER GRAPHICS TESTBED TO SIMULATE AND TEST
VISION SYSTEMS FOR SPACE APPLICATIONS

By

J.B. CHEATHAM, C. K. WU and Y. H. LIN
forf

10/15/86 - 10/15/87

o GRANTNCCY-16
MECHANICAL ENGINEERING AND MATERIALS SCIENCE DEPARTMENT
' | RICE UNIVERSITY
HOUSTON, TX 77251-1892
MARCH 1988

Table of Contents

Executive Summary i
Objectives
Overview
Introduction 1
Graphics Modeling Using APL GRAPHPAK 1
Graphics Modeling on the SUN Workstation 10
Physical Modeling 12
Computer Vision System 12
Summary and Conclusions 17
Glossary 17
Summary of 3M VDL Macros 19
Bibliography 20

Appendix A: APL GRAPHPAK Modeling

Appendix 8: FORTRAN Program to Transfer Solarmax
data from IBM 370 to Celerity C1200

Appendix C: C Program for Graphics Modeling on the SUN Workstation

Appendix D: C Programs for Image Processing using the 3M VDL Vision
System i

COMPUTER GRAPHICS TESTBED TO SIMULATE AND TEST
VISION SYSTEMS FOR SPACE APPLICATIONS

Principal Investigator: John B. Cheatham, (713) 527-4822
Professor of Mechanical Engineering
Rice University, Houston, TX 77251-1892

Executive Summary

Objectives: The objectives of this project are to develop a system for
displaying computer graphics images of space objects and to demonstrate
the use of this system as a testbed for evaluating vision systems for
space applications.

Overview: In order to evaluate vision systems, it is desirable to be able
To control all factors involved in creating the images used for processing
by the vision system. Considerable time and expense is involved in
building accurate physical models of space objects. Also, precise
location of the model relative to the viewer and accurate Tocation of the
light source require additional effort. Although the motion of a small
satellite model can be controlled by a robotic manipulator, such as a
PUMA, this task requires additional equipment and time. On the other
hand, the position and motion of a computer graphics generated model can
be controlled accurately with precise light location.

As part of this project, graphics models of space objects such as the
Solarmax satellite are created such that the user can control the light
direction and the relative position of the object and the viewer. The
work is also aimed at providing control of hue, shading, noise and shadows
for use in demonstrating and testing imaging processing techniques. The
simulated camera data can provide XYZ coordinates, pitch, yaw and roll for

the models. A physical model is also being used to provide comparison of
camera images with the graphics images.

INTRODUCTION

A robotics software simulation testbed is being developed by NASA
Johnson Space Center to identify the enabling automation and robotics
technologies for space operations into the next century. The project
described in this report is aimed at evaluating vision systems for space
applications and providing assistance in the overall effort to develop the
robotics simulation software testbed. The three complimentary efforts
involved in this project are graphics modeling, physical modeling, and
vision system evaluation. Research results for each of these efforts is
described below. T

Initial work on the graphics modeling was done using APL GRAPHPAK
software. This permitted rapid conversion of the dataset for a graphics
model of the Solarmax satellite to be drawn using a dataset obtained from
Johnson Space Center. A FORTRAN program was written to permit conversion
of the dataset for use with a Sun workstation working with a network file
server with the mechanical engineering department Celerity C1200
computer. Once data had been translated over in a form suitable for use
with the Sun IIl workstation, the testbed was developed in a form
containing menus that permit the user interactive control of the graphics
modeling. Results using a simple physical model are compared with those
obtained with the graphics model and both of these models are utilized in
the evaluation of a computer vision system. The 3M VDL vision system is

described and examples of its application in image processing are givan,

GRAPHICS MODELING USING APL GRAPHPAK

One of the objectives of this research is to create a computer
graphics testbed for simulating images of a slowly spinning satellite as
viewed by an autonomous robot vehicle vision system. In this work it is
necessary to control the relative location and attitude of a satellite
with respect to the observer.

In the preliminary work on this project APL was used to generate
images of the Solarmax satellite. A brief discussion of image generation
using APL is presented and results are given for several example positions
of the satellite relative to the viewer. Computer programs, data and
additional output images are collected in the Appendices.

Image Generation Using APL

Images were produced for different orientations of a satellite with
hidden line removal. Rotation of the reference frame involves matrix
manipulation that APL can handle concisely and powerfully.

The two features of APL that are extremely useful are:

1) the use of arrays to store all kinds of data
2) the use of a large number of mathematical functions (each coded

as a single symbol) to manipulate arrays.

One main advantage of this approach is the great number of operations
that can be performed with very short programs. A second advantage is the
fact that most of the operations are very similar to those seen in
mathematics. Unfortunately, to be able to use the language, the user must
learn:

1) the meaning of quite a few special symbols;
2) ways to organize data into array format.

GRAPHPAK is an APL workspace containing predefined functions that
produce drawings on graphics devices. GRAPHPAK provides us with the
ability to draw and transform projections of 3-dimensional objects.

A data set was prepared for the Solarmax satellite and programs or
functions were written for hidden-line removal to handle data transmission
between TSO and APL environments. These functions and data sets are given
in the Appendices. -

Three-dimensional objects are represented by a 4 column array, the
last three are the x, y and z coordinates of a point and the first column
contains either a zero or one. APL uses the line method to draw, so a 0
means “"move", and a 1 means "draw". The coordinates used are screen
coordinates, with positive-x to the right, positive-y up, and positive-z
out of the screen,

The original data set "“solarmax.vec" listed in the Appendix was
modified to permit hidden-line removal. For convenience, we separated the
data set into seven groups, which are ANT, BASE, BODY, HOLE, JET, SPAN and
TORSO. Also the vertices for each surface must appear in a counter
clockwise order looking toward the surface. Function "pickup" can create
the required data from raw data by specifying the surface number only (see
Appendix).

Finally, we combined all the subpart data, already processed by the
function "pickup", into one big data set "solart". The data set "rowse"
is created by the starting and ending vertex number of every surface.
Both data sets are fed into function "hidden".

APL does not have an edit function. When editing the data set, we
can transmit the APL data out to TSO mode, edit those data by the TSO
editor and then transmit back to APL mode. The functions "IN" and "OUT",
listed in Appendix C, can help us to transmit data back and forth,

It is not easy to identify the 3-D vertices of every surface on a 2-D

screen. The function “"analyze" draws the picture step by step to permit
one to determine the coordinates of any vertex in the picture.

Hidden-Line Removal

A surface is defined by at least three vertices. The identification
of vertex 1 is arbitrary, but it is important that the numbering of the
remaining vertices of the surface continue in a counterclockwise
direction, as viewed from outside the object, facing the surface. We then

identify vector ﬁ, directed from vertex number 1 to vertex number 2, and
vector v, difectgd from vertex number 1 to vertex number 3. The cross
product, n = u x v, will be normal to the face of the object and will be
directed outward.

With each surface of an object we also associate a second vector Q,
a line-of-sight vector. This is the vector directed from vertex number 1
of the surface to the viewpoint jthe location of the eye of the viewer).
The dot product of yectgrs w and n has the property
wen=|w |n| cose .

where 8 _is the angle between w and n. For a visible surface, the angle
between w and n is between 0° and 90°, and w « n is positive., For a
hidden gyrface, the angle between w and n 1is between 90° and 180°,
and w » n is negative.

Function "visible" listed in the Appendix is the visibility filter.
Those surfaces which face the viewer will pass through the filter,
eventually to be plotted. Those surfaces which do not face the viewer
will be rejected.

The method described above permits drawing of the visible portions of
a single convex object. If we try to draw the visible portions of several
objects, it will be necessary to identify those portions which are hidden
by a closer object. We could consider that the hidden portions of an
object have been filled, but were covered by the filling of a closer

object.

The major part of blackout is to determine the drawing sequence of
every visible surface of the whole satellite consisting of seven
subparts. The function "hidden" 1listed in the Appendix plots every
visible surface in the order of the magnitude of distance between the
surface and the viewpoint.

Graphics Models ofwééiérméx

The seven component parts for the Solarmax satellite have been drawn
with top, front and side views using the APL threeviews function as shown
in Appendix A. These were plotted on a monochrome Tektronic graphics
terminal (TEK4010). A plot of the entire Solarmax satellite using the
threeview function on the data set SOLART is shown in Fig. 1. The x, y, Z
axes for the satellite are drawn on this figure as well as the rotations
required to show the top and front views. These rotation values are
angles in degrees for rotations about the x, y and z axes.

The graphical displays for the satellite with hidden-1ine removal
have been drawn using a TEK4105 color graphics terminal. An example of
the results using this procedure are shown in Fig. 2. The allocated data
sets are "solart" and "rowse". The execution procedure is

. 93L11930S 3O SM3LAIDUY) :T "bL4.

XHI'N 00 0| 00D 0 xJN

-1

0006

A

s

L1YY705 SMIINIIYHL

8 8_ hidden solart

X ey z
where o6 , 8 and 8. are the rotational angles in degrees about the x, y

9
and z ates. Y It c&n be seen from these results that it is possible to
control the relative attitude of the satellite with respect to the viewer.

Simulation Model

We now advance to simulate a slowly spinning satellite as viewed by
an autonomous robot vehicle vision system. Because a perspective
projection is needed for this simulation, the function "visible" is
changed and listed in the Appendix.

Two different types of simulated vision systems are studied. One of
them has the camera view fixed as it moves toward the object along a
certain desired path. We call this type the “fixed vision system" which
is easily modeled by experiment. Another one, called the "tracking vision
system", has the camera view adjusted automatically to focus on the object
no matter what the path is. We study these two different vision systems
in the following.

Fixed Vision System

In this model, the robot approaches the satellite and follows the
path which is drawn as threeviews, This figure, containing an extra
oblique projection, is generated by the new function "threeviews" which is
modified from the original one and listed in the Appendix. Firstly, we
create the data set TRACE, listed in the Appendix, which contains the
attitude data from the columns 1 to 3 and 3-D path data from columns 4 to
6. A function MOTION, listed in the Appendix, reads the data from TRACE
and generates the images one by one. The results are plotted on one
picture to show the changes of attitude and size of satellite when the
camera approaches the spinning satellite (see Fig. 3).

Tracking Vision System

In the tracking vision model, the robot camera always focuses on the
satellite and is adjusted whenever the path is changed. The path data set
HELIX, listed in the Appendix, contains the spin angle 8 in degrees in
column 1, and Y and Z positions in columns 2 and 3. YThe helix path
projection on the X-Z plane is governed by the following formula in polar
coordinates

where 6 1is the spin angle (degree) about the Y axis and y is the distance
between’the camera and the satellite.

A new function ROBOT, listed in the Appendix, reads the data from
HELIX and generates the images sequentially (see Figures 4 and 5).

wo3SAS UOLSLA PaxL{ JO sy nsay £ "bry

<~

Fig. 4: Satellite at y = -180
z = =300 °
ey = 270

gy

/.

N

Fig. 5:

Satellite at y

z
e

Y

60

Preliminary computer graphics images of the Solarmax satellite as
described above were generated using APL on the Rice University AS39000
mainframe computer and TEK4010 and TEK4105 graphics terminals. The next
step of the process of developing the computer graphics modeling involved
transferring these data to the SUN-III workstation.

GRAPHICS MODELING ON THE SUN WORKSTATION

A complete graphics model of the Solarmax satellite has been
generated on the SUN-IIT workstation. The model can be manipulated to
show arbitrary views and different shading effects. The SUN-III
workstation supports a SunCore package which implements the ACM SIGGRAPH
core system that conforms to level 3C (dynamic output with 3D scaling,
rotation and translation) of the core specification for output primitives,
and to level 2 (complete input) for input primitives.

Data Generation

The satellite data were transferred from the IBM 370 to the
Mechanical Engineering Celerity C1200 computer. These data originally
were bulky and complicated, since some vertex coordinates which were
repeated several times were easily implemented in the APL graphics
system. To reduce the size of data, a FORTRAN code (Appendix), "trans.f",
was implemented to accomplish this job. There are two input files needed
for this code, One is a vertex coordinates data file, "s.s". Another is
a file "s.n" containing the index of each vertex for each plane. After
running the program, the output file solar.s is generated in a concise
form which covers every vertex only once. Based on the data, a program
"shad" has again been implemented successfully for displaying graphic
models with choice of different shading. The data of the solar plate is
entered once as a no-thickness plane, not a solid object. But in an APL
system, we enter the data twice to simulate two opposite faces. However,
the "shad" program does work for a no-thickness panel very well.

Description of Program

The C program on the SUN workstation is described in this section.
The input data sets are allocated as follows:

no. of vertices no. of surfaces
Wy W, W_, W, w_, W, = window coordinates
X y 2 cgord¥nates of each vertex
no. of vertices in each surface every vertex index on each surface
The C program "shad.c" originally written for demonstration purposes

by Sun Microsystems, has been modified to provide the following menu
driven screens:

10

Screen 1: Enter the desired shading style

1) Wireframe display
2) Gray shading
3) Gourand
4) Phong diffuse [default]
5) Phong specular
Enter your choice (1-5)

Screen 2:
1) Gray
2) Red
3) Green [default]
4) Blue
5) Yellow

Enter your choice (1-5)
Screen 3: Enter the desired display option

Still frame
Rotate the viewer [default]
Rotate the object
Rotate the light source
5) Quit
Enter your choice (1-5)

£ N
e N Mts? s

Note: "rotate" means rotation about vertical y axis.

Screen 4: Enter the light source position [default: 0.0, 0.0, -1.0]

X
y
z
Enter the viewer position [default: 4000, 8009, 6000]

X
y=
¥4

Screen 5: Enter noise 1e9e1

1) White noise

2) Coherent noise

3) No noise [default]
Enter your choice (1-3)

Note: "The light source position" specifies the direction of the light
source from the object. The direction 1is expressed in NDC
(normalized device coordinates).

This system permits the viewer to control the éhading, color, motion,
Jight source position and viewer position.

11

Artificial noise can also be introduced. Gaussian white noise or
coherent noise can be generated and superimposed on the graphics
picture. This operation permits the simulation of a picture transmitted
via a noisy channel.

Wireframe displays of the Solarmax satellite model and a hexagonal or
hex model are shown in Fig. 6 and the corresponding gray shading models
are shown in Fig. 7. The hex model is used to illustrate application of
the graphics model to evaluation of a commercial vision system.

PHYSICAL MODELING

A 6" x 12" (base x height) hexagonal box was assembled to simulate
the body of the Solarmax satellite. This model is supported by a thin rod
that is attached to the PUMA 560 Robot. The mode! can be moved by the
robot arm to simulate the navigation of a satellite in space.

A communication channel between the PUMA 560 controller and the IBM-
PC XT was established and a BASIC program that transfers 6 real numbers
(dx, dy, dz, pitch, yaw, and roll) to the PUMA from the PC was implemented
and tested successfully. A VAL II program was written which receives the
six numbers transferred from the PC and moves the PUMA manipulator arm to
the corresponding position. This system permits control of position and
orientation of the model. Considerable time and expense is involved in
building accurate physical models of space objects and precise location of
the camera and light source require additional effort. On the other hand,
the position and motion of the computer grahics model can be controlled
accurately with precise light location.

Pictures of the hex model in a room with a single bright light source
are similar to those produced by the graphics system. Results of the
image processing procedures are comparable for either the physical or
graphics models.

COMPUTER VISION SYSTEM

A 3M VDL (vision development language) vision system is used in the
work described in this report. This system is a high-speed vision
development workstation with a digitizer that provides a resolution of 512
x 512 x 8. This system provides a wide variety of vision algorithms for
picture acquisition including filtering, feature enhancement, image
segmentation and feature extraction, statistical data manipulation, and
object data base matching. These algorithms are encoded into macro forms
(also called primitives) that can be used as building blocks in a high-
level language program designed for a specific vision application. These
macros can be used interactively, in a command interpreter called VDL-
BASIC or by a C compiler using VDL software in a C command subroutine
library.

12

||

a b
Figure 6: Graphics Wireframe Models

(a) Solarmax Satellite, (b) Hex Cylinder

a b
Figure 7: Computer Graphics Gray Shading Models

(a) Solarmax Satellite, (b) Hex Cylinder

13

yision Primitives

The upgraded VDL software provides 151 image processing primitives in
the areas of control, image 1/0, transformation, convolution, graphics,
color, dilation/erosion, segmentation, statistics, image arithmetic,
threshold, edge detection, transition detection, and neighborhood
transformations. A1l these primitives are implemented such that the
images are processed in the spatial domain. These spatial domain
implementations have the advantage of fast processing time. Indeed, most
of the primitives take only a few seconds of processing time.

Those primitives applicable to the space applications, such as

location determinations and object recognition, are especially of
interest. They were studied extensively and are discussed below.

Edge Detection

Ten VDL primitives are available for finding edges in a binary or
gray image. Nine primitives, (BIN(), KIR(), ROB(), SO0B(), LGR(), HGR(),
VGR(), VDX(), and VDY()), employ the information of the first order
gradient. The existence of an edge is asserted if the gradient exceeds a
given threshold value. Five of the first order edge detectors are two
dimensional and four are one dimensional. One 2-D second order gradient
edge detector, GCR(), finds edges by means of zero-crossing. The
processing time is about 5 seconds for an image of size 256 x 256. It can
be reduced proportionally by reducing the work window size,

Dilation/Erosion

Dilation and erosion commands (DIL(), ERO(), etc.) are available for
both binary and gray images. The maximum number of pixel neighbors that
are used in the dilation/erosion procedure is limited to 8 pixels.

Noise Removal

Two commands are implemented for the purpose of relieving noise by
averaging the pixel values. The AVN() command averages the pixel values
in the neighborhood of 8 pixels. The GAU() primitive performs a weighted
averaging process.

Statistics and Transition Detection

Several statistics commands and transition detectors are very useful
in determining the position information of an object. The CEN() command
returns the center of gravity of a binary image. The MXX() command finds
the right most edge of a gray object. The LXX() command detects the right
edge along a line, etc. By using the combination of these primitives,
position and orientation of simple geometries can be easily determined.

14

Programming Structure

The VDL software provides a very limited programming structure. To
extend the flexibility of the use of the system, a C compiler was added to
the system, The VDL software provides a C command subroutine library,
With the command library, all 151 vision primitives can be called from a C
program. Several C programs, (Appendix), were implemented to examine the
performance of the primitives under the C language. The only difference
observed is that the processing time is slightly increased.

One C program 'ft.c' was implemented to compute the 2-D Fourier
Transformation of an image of size 64 x 64. The image is read from the
frame buffer 1 and the results are stored in two data files. The
execution time for this program takes about 20 minutes. This implies that
if frequency domain processing is required by using this system, a long
processing time must be taken into consideration.

Image Processing

Application of the vision system to image processing of the hex model
is described in this section. Terminology used is defined in a glossary
at the end of the report. A digitized picture after use of the Sobel edge
detector is shown in Fig. 8. The noise in this picture can be eliminated
by additional 1mage process1ng. i e . ,

A h1stogram for the d1g1t1zed 1mage is pTotted in Fig. 9a. This
chart displays the number of pixels (picture elements) at each gray level
from -128 for black to 127 for white. There should be five clusters of
gray levels for the four sides of the hex and the backgroun, however,
there is considerable overlapping of the brightness intensities of the two
sides on the white end of the chart., The dark background can be seen as a
sharp spike at the left side of the chart representing the darkest
pixels. This histogram was segmented interactively by mapping ranges of
gray values corresponding to each of the faces and the background into
single gray level values using a partial threshold command. Results are
shown by the segmented histogram of Fig. 9b.

The following procedure can be used to display the top surface as
white and all of the other surfaces and the background as black. the
partial threshold command PTH(start-value, end-value, replace-value) maps

all pixels with gray levels between start and end values into a single ...

gray levels having replace-value. Thus PTH(-128, -90, -128) maps all
values below -90 into black (-128) and PTH(-60, 127, -128) maps the range
from -60 to 127 to black. Then PTH(-90, -60, 127) maps the top surface
into white (127). ADD() combines the white top surface with the image in
the second frame buffer. When the image of Figure 8 is in the second
frame buffer one obtains the result shown in Figure 10. Each of the faces
can be isolated in this manner,

15

Figure 8: Hex Model - Output of Sobel Edge Detector

Figure 9: (a) Histogram of Hex Model Image,
(b) Histogram after Segmentation

Figure 10 Display of Top Surface as white after

Using Partial Threshold Command

16

By adding all of the surfaces using the segmented histogram of fig.
6b one obtains the image shown in Fig. 1lla. Here each of the surfaces
contains only a single gray level. Now using the Sobel edge detector on
this final image one obtains the wireframe model shown in Fig. 1lb. The
final result of the image processing procedure is to produce a clean,
noise-free model and a wireframe model that is essentially identical to
the graphics wireframe model used in the construction of the image. Such
a wireframe model can be used by vision algorithms to identify objects
from a library of properties of objects stored in computer memory. This
exercise illustrates applications of computer graphics modeling to an
image processing procedure that utilized several of the macros provided by
the vision system,

SUMMARY AND CONCLUSIONS

Computer graphics modeling has been performed using both the APL
GRAPHPAK and a C program written for the SUN workstation., These models
permit user control of model location and orientation, 1light location,
viewer position, surface shading parameters, color and introduction of
artificial noise onto the image. A physical model was constructed and
image processing techniques were applied to both the graphics and physical
models. It has been found that the graphics models compare favorably with
the physical model and offer the advantages of being less expensive and
easier to provide control of the important parameters, such as light
source and viewer positions.

Preliminary evaluations of the 3M VDL vision development language
system indicated that serious image processing could not be accomplished
well without the addition of a C compiler. This has been done and
examples of applications of the vision system to both the graphically
generated models and the physical model have been presented.

GLOSSARY

DIGITIZATION: the process by which analog image signals are converted
into intensity values and are assigned to pixels of the digitized image.

PIXEL: short for "PI(X)cture ELement." The smallest resolvable area in
an image; an individual photosite on a solid state camera.

RESOLUTION: the measure of a system's ability to represent images; the
number of bits of accuracy or number of gray levels that can be
represented in a pixel. Also, the number of pixel columns and rows in an

image raster.

DIGITIZER (FRAME GRABBER): a frame grabber; the device that samples
analog video input data, converts them to digital values and stores them

in computer memory.

FRAME BUFFER: computer memory specially designed to hold image data and
allow for simultaneous video display.

17

iy
L TR

PN

La
*0n .

PR

.

1
[kd

- mﬁ.,\
. .m;‘... ny

Hex Model Image after Segmentation

(a)
(b)

Figure 11

Output of Sobel Edge Detector

18

INTENSITY: the degree of brightness of a pixel, determined by the value
stored at the pixel's address in memory.

GRAY LEVEL (GRAY SCALE): the intensity of brightness, stored as a
discrete value in each pixel,

HISTOGRAM: a chart showing the frequency of occurence of gray levels in
an image.

THRESHOLD: a point at which a pass-fail decision 1is made. More
specifically, the intensity value below which a pixel is forced to black,

and equal to or above which a pixel is forced to black, and equal to or
above which a pixel is forced to white.

BINARY IMAGE: an image represented in black and white intensities only.
GRADIENT: the rate of change in pixel intensity linearly over the raster.

EDGE: regions of an image where intenstiy levels change rapidly,
representing a border between distinct areas.

EDGE ENHANCEMENT: process by which the image intensity changes across an
edge are heightened.

EDGE DETECTION: process of locating an edge by inspecting a pixel and its
neighbors and finding rapid changes in intensities.

SEGMENTATION: the process of separating objects of interest from their
image context or background.

NOISE: meaningless data in an image not related to the image and produced
by a variety of sources, such as the camera.

SUMMARY OF 3M VDL MACROS

BIN() = Binary edge detector

KIR() = Kirsch edge detector

ROB() = Roberts edge detector

SOB() = Sobel edge detector

LGR() = Largest gradient edge detector
HGR() = Horizontal gadient edge detector
VGR() = Vertical gradient edge detector
VDYgg = Hough vertical gradient

DIL() = Dilate gray image

ERO() = Erode gray image

AVN() = Average neighbor

GAU() = Gaussian (low pass) filter

CEN() = Center of gravity

MXX() = Rightmost edge of an object
LXX() = Rightmost edge pixel along a line
PTH() = Partial thresholding operation
THR() = Thresholding operation

19

BIBLIOGRAPHY

1.

2.

3.

4.

10.

11.

12.

13.

14.

15.

William M. Newman and Robert F. Sproull, Principles of Interactive
Computer Graphics, 2nd Edition, McGraw-Hill, New York, 1979.

James D. Foley and Andries Van Dam. Fundamentals of Interactive

Computer Graphics, Addision Wesley Publishing Company, Reading, MA,
1982.

Theo Pavlidise. algorithms for Graphics and Image Processing,
Computer Science Press, Rockville, MU, 1982.

SUN Reference Manuals, Sun Microsystem, Inc., Mountain View, CA,
1986. :

Berthold Klaus Paul Horn. Robot Vision, McGraw-Hill, New York, 1986.

Alan Pugh, Editor. Robot Vision, Springer-Verlag, Berlin, 1983.

Dana H. Ballard and Christopher M. Brown. Computer Vision, Prentice
Hall, Englewood Cliffs, N. J., 1982,

Rafael C. Gonzales and Paul Wintz. Digital Image Processing,
Addison-Wesley, Reading, MA, 1977.

05-9/6800 Operating System User's Manual, Microware Systems
Corporation, Des Moines, Iowa, 1985,

VDL PC §Vision Development Language% User's Manual, Version 1.1, 3M
Vision Systems, Minnesota Mining and Manufacturing Company, Mclean,

VA, 1986.

D. F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill
Book Co., New York, 1985. i

P. Bergeron, "A General Version of Crow's Shadow volumes", IEEE CG &
A, September 1986, pp. 17-28.

A. Appel, "Some Techniques for Shading Machine Renderings of Solids,"
Proc. SJCC 1968, Thompson Books, Washington, DC, 1968, pp. 39-45.

P. Atherton, K. Werten, and D. Greenberg, "Polygon Shadow
Generation," Computer Graphics (Proc. SIGG12APH 78), Vol. 12, No. 3,
July 1978, pp. 275-281.

F. Crow, "Shadow Algorithms for Computer Graphics," Computer

Graphics, (Proc. SIGGRAPH 77), Vol. 11, No. 3, July 1977, pp. 242-
248.

20

16.

17.

L. Williams, "Casting Curved Shadows on Curved Surfaces," Computer
Graphics, (Proc. SIGGRAPH 78), Vol. 12, No. 3, July 1978, pp. 270-

274.

T. Whitted, "An Improved Illumination Model for Shaded Display,"”
Comm. ACM, Vol. 23, No. 6, June 1980, pp. 343-349.

21

APPENDIX A: APL GRAPHPAK MODELING

Programs, Data and Examples of Qutput

Program Description

HIDDEN

[1] problem space window XL YLL XUR YUR

lower left upper right
corner corner

[2] number of planes

[3] Index origin =1

[4] map problem space into the scaling viewport

[5] scales data to fit between -1 and 1

[6] rotate the object through angles 8 » 9y and 8, The angle is

- measured in degrees, and the rotation is counterclockwise.

[7] create a perspective projection of an object onto the X,Y plane,
from a vantage point on the Z-axis, perpendicular to the plane of
the paper.

[8] perform a transformation from the scaling viewport to a window in
problem space.

(9] comment

[(11] 1 =1

[12] initialize matrix “judge"

[13] create the sequence of integer numbers from rowse [I,1] to rowse
(1,2].

[14] Is this plane visible?

[15] increment I
[16] If I < planeno THEN GO TO [13]
ELSE CONTINUE

[17] comment

(18] 1=1

[19] label

[20] skip the invisible plane

[21] plane number

[22] vertices numbers of the plane

[23] fill with a color

[24] draw the picture edges

[25] comment

[26] 1increment index I

[27] If I < planeno THEN GO TO [19]
ELSE EXIT

(28] comment

VISIBLE
[l d
(2 +

[31 (dxvVv) K »>0? visible o test
[4] comment
[5] Z coordinate of the last vertex of the plane

[6] export the visible information and maximum Z coordinate of the plane

DILL[310S JO SMILABIUY|

LMYT0S SMIINIIMHL

-

-QSY0OL ILNPOW JO SMILABAY]

O5¥01 SMIINZTINHL

»o am cmps ew--

Y e L T R

Computer Programs and Data

Hidden Line Removal Function

v HIDDEM [[1]1
v ROT HIDOER] OBEJFDS;OLIDOWH §HE T 3ROVEFRYT 1T) UG
L13 We 1 71 11
23 FAoAMHIEHO ¢ FROWSE §]
£3] [1H0¢1
[4] DGl THTO SVE
L[5 OLJDOWHe ~1 1 SCALE Ok
[é6] FeROT BOTATE ORJDOWH
[71 FTeCLD] FERSFECTIVE K
£81l TeDS MEM RTL 1 2 %)
[?1 n
101 e 900
L1113 Ted
[12] JUDGE« (FLAHENO, 3P0
[13] EVALIROWRe ((ROWSEF T4 A(ROWSELTFDIIMN)) /N
[14] JUDGE[T; Je(VISIELE R[FEOWFR;J),T
C15] TeT+]
L1461 3(ILFLAMEND) /JEVAL
C17] JUNGE ¢ JUNGE[(AJUDGEL$27)3]
L181 Tel
[19] FLOTSS
[20] 2(0=JUDGE[I};]17])/MHEXT
[21] JeJUDGE[T;3]
[22 FOWF & ((ROWSEL.§1I{HYA(ROWSELJF0T20Y Y /N
[23] FILL TLROWR;] '
[24] DEAW TLROWRE;] USING COLOR C[1]
[25] a e[
[26] MEMTTeT4+]
[27] 3 (I{FLANEND) /FLOTS
[28] n

<

v VISIELE [[1] %
U THeVISIEKLE FjOR]jCRDIVISTT
£13 Crler[2y 2 31-FL15 2 33
L213 CrR2¢FC33 2 31-FL1s 2 3]
L3] VIS¢ ((CRIL1IIxCRRL2I)-CRIL2IXCRIN11)2L0
C41 n
[S] STEFL(FPLEF11)74]
[6]1 '+ THeVIS,==
v

Data Transmit Function

O OINPOY S
v AFILLOETSOr IM COL;AFLS;AFLAROW
£13 AFLS«GETFILE TSOF
£23 AFLACREFHS AFLS
£33 FOW¢fFAFLA
L4] AFI_V& (FOWL1]yCOL)YF g, AFLA
v

v GETFILE [Q] ¢
v AGETFILE Fj;C;DE;CG

£13 Ce'C?

£21 TSO 'FREE DD(C)'

[31] ‘c' ALLOCATE E

C4] CeCy' (192 K !

LS] CCe¢C,y'CTL

£s61] 2(2A,=A¢111 [OSVO D¢ 2 2 p'C CC'H/L]
£73 1SHARE FAILURE'®

£81l 40

[P] L1!4+(0Ov,#Rel,CCH /L4
10 A« O O f' '
L11] L2:3(0=FEeC) /L4
123 ~(0#CE) /L3
[13] AeA VCAT E
£14] L2
[15] L3 KEAD ERFROR, FRETURM CODE{ ',e4CC
L1461 LAIOSVE D
v

v REFMS [[1] ¢
T MEREFNS MO3ISST

[11 MeMO
[2] ISerM
[3]1 Iel

[4] LF1iJed
[5] LF2:+SKIxX\M[T;J]#"'~"
L6l METdJer !
7] SK1$aSKx\MLIjJI]2'+"
£81l MLI3J]e'0!
[9] SKIaLFRx\IS[2]2Jed+]
L10] ALFIx\ISL1J2T¢I+]

“ 9

v OUT [[J] v

v AFLY OUT TSOF;DIMIELKZRIY
£13 AFLVAcAFLY
23 DIMeFAFLVA
£33 ELKe(DIML1]yB80~-DIML2T)p "' !
C43] FDTe(DIML1],80)FAFLVA,[D] ELK
[s3 Y FUTFTILF T&OF

v

v FUTFILE [] ¢
9 Ae¢Rk FUTFILE C3F3FC3ISH;RSSTO0

C13 0101

[2] Ee(T24 1 1 sfrE)FE

£33 FeTSO 'FREE DD(CARDSADA)!

CA] FeTS0 'FREE DD(F)'

[S51 FeTSO 'ATTRTE CARLSATA RECFM(F E) LRECL(80) KLKSIZE(4240)'
L4 De!' HEW !

L73] Ke' CATALOG !

[8) Ce' ECD

£?1 S¢' SFACE(10,50) FRLKSIZE(4240)

C10]1 AQe' w !

Ci1i11 Ue!' (CARLISAD4) '

L12] FEel11d

[13] We'()' FREFARSE C

C141 =(4>14FT) /LA

L1851 (' ()'v.#D[2 4 $11)y/LA

[14] He(M#' ") /HeyDL143]

[17] DPe 5 0 4T

£18] 4LE

[19] LAHe(HE' ') /Men[135]

[20] ©e 1 O 4D

[21] LOI-+(0=14FT¢ 1 O ¥I) /L4

[722] LE!2(0efTEORLANKS (OFTSALCD MEMEER D) ZQOFTSALCD)/L10
[23]1 De' 'yTy' !

L24) LlogQ(OEFTGDELAHKS(gglgnLCK MEMEEF D) Z0FTSALCK) /L]
[25] K&' 'yTy' ! ‘ '

L[26] L1:+(ngT+GBLANKS(gEI§CDHV MEMEEFR D) /0FTSCOMV) /LD
[27] C&' 'pTy' !

[28] L2:4(0='USING' MEMEER D) /L3

[29] g@((T#' ')/Tb,b[((\3)+~DIO)+D HAMETIMDEX 'USING';]),' '
£30] L3:4(0='5PACE' MEMEER D) /L4

£31] Te 1 2 3 4D MAMEIMDE 'SFACE'!

[32] (' ()'v.# (W' ') /WeyDL14AT) P 23T31) /L7

[33] S¢' '»('SFACE' ,(Wad' ')/WeyDLT3])y' 'H»OBRLANKS DL1+714T3]
[34] A(')C've#("14W) 1AW (W' ') /WeyDL4+T5]) /L7

[35] SeSy' 'gW,*

[34] 1L414(0=0eTE0 'ALLOCATE DO(F) DA yHy ') gD, KyGy ' USTHG L) /1
[37] 4(0=AeTSO 'ALLOCATE DLD(F) DA(',i,') OLD KEEF')/L5
[38] ‘'ALLOCATE FAILURE, CODE=',¢A

L3?1 =0

LA40] LSIa'Fe''F (' ,CphR,y 1"

C41] «'FE&"" ' Fy! CTLIY

£42] 4(2a.=E O5V0 5S¢ 2 2 p'F FO')Y/LS

[43] 'SHARE FAILURE, !

L44] -

LA5] L&A (0A.=TeF,FC) /L7

[44] 'OFEH FATLURES ‘', T

[471 e
[A8] L7iMe147E
L4917 10 SR

[S50] L8894 (MH(TIeId])/LQ
[51] FeR[T5]

[52]1 9(0=FeFEHY/LY .
[S3] VWRITE ERROR: ', ¢F -
[54] o
[55]1 LOIRe[ISVR S

<o

v TEO [0 @

¢ CeTSO AFEI[IIOND
C11] Oroeo

[2] +(2=CeAECMI JEVO 'E') /L]
[3] FTS0 SHAORE OFFER FAILURE!?
L4120

[5] LitTenen
Lé1] B((OXTTYFE C)y (1#F»C)y1#rFCex) /0
[71 =(0=Ct)/0
[81 2(9PP<C) /LD N
[$] 'TSO RETURM CODE?! ', (¢C)y',"'
£10] L3 S e .
[11] L2:'T50 AREND CODE? ', 'Ql23454678FRKCDEFHX'[IP(4F16)+C]
[12] L3 'COMMAND! ',eD S
v

£1]
L21
£31
~L4]
L33

o bh bt O G A R O H R O R O SO R R RO RO

FFSHEWL T J¢ORDER[I§17],0RGLORDERLT;2];

14
17

14
17
20

Pickup Function

v FICYUF [[J]1 v

7 HEWEORDER FICEUR
NepQRDER 31]
HEWE (M, 4)F0

Tel

S(H2TIeI+]1)/RF
v

OTOrRS0

OFGIMGT

"y

[

Pt bk b Rl) bkt b b b D) el e bk b O R ek R O el b L b O R b b O R bk b bl 3 R ek b e (D)

[S 0 R

norIe
10.5375
10,575
34175
3,175
16,575
16,975
10,573
3.173%
3.17%
10.375
10.573
10.575
3.175
3.175
10.57%
10,373
10,575
3.17%
3.175
10,573
10,573
10,570
3,175
3.175
10.8975

10+d7d

10.575

3,175
3.175
10.575
10,975
10,575
3.175
3'17»}
10.575
10.575
10.575
3.1735
3.175

10.573

AW

TORTO
'"") 44()
244449
R W W X

+ 4449
“‘.4449
T2.4449
T1.1266
“1.12644
~2.4449
=2,4449
T1.1266

1.1246
1.12466
T1.,1264
T1.1246
1.1266
2.4449
2.4449
1.1266
1.1266
- 244449
2.4449
244449
2.4449
2.,4449%
2.4449
1.12466
1.12464
2.4449
2.,4449
1.124864
Tlel244
T1.1244
1.1266
1.12866
“1.1266
T2.4449
T2.4449
T1.1266
“1.1266

") R)'7{‘ z
2.2
”?.7533

’:)’ ;ss

2.2383

T2.2383
T3.3379
~3,337%

_o.383

2.23083
-3.3375
“3.337%
33,3375
~3.3375
~3.3375
~3.33735
—2.2383

—2.2383
“3.2375
“3.3375

-2,2383

2.,2383

2.2383

T2.2383

T2.2383

2,2383

3.332735

3.3375

2.2383

2,2383

X.3375

3.3375

3.3375

343375

3.3379

33,3375

2.2383

2.,2383

3.3375

3.3373

C11]
£21]
£33
C43]
£53]
L61
L71
[8l
£91
L1061
[111]
L1221
L131
[141]
L1532
161
£C173

L1131
£L21]
L33
L4137
L51
L63
£71
£el
[21

Graphics Analysis function

¢ aHeasEr) v

Q@ AMHAIROEISH T FTEME
We 71 71 11

O¥Je 0,95 0.95 TCALLE O
FETICLE

SKETCH OFREJ

Eel]

4 (E='Q')/0

FETICLE

MepOEBJIL§1]

Ie¢d

FEF{JeI4]

TEMFe D2 4 FORJI[TI;],0FJI[I}]
TEMF[151]¢0

SKETCH TEMF

Ee[
+(E='Q"')/0
I¢J

> {(I¢Hy /FREF
v

© THEEEVIEWS [
v THREEEVIEWS Fju
A OFRTHOGRAFHIC FROJECTIONS

We 2 72 2 2

Fe 70,935 0.95 SChRLE F

qa FROMNT VIEW

SKETCH =1 —1 Q0 TRANSLATE F

A SIDE VIEW

SKETCH | =] 0 TFAMSLATE Q —90 (O FOTATE F
A TOF VIEW

SKETCH —1 | O TRANSLATE 90 O O FROTATE F
v

APL Function "visible"

v VISIELE [[0] @
¥ THEVISIELE FjSUMSISVISSS
L1 I« 2 3 41
£21 SUMeI CRXDOT F
£33 I« 3 420
£43 SUMe (I CRXDOT P)4+SUM

£33 I« 2 430
C&] SUMESUM=(I CRXDOT F)

£L71 VIS¢SUM)YO
£81 Z2¢FL(FFL#115%41
93 THeVIS, =T

v

¢ CRHDOT [[J] @

v SUMeI CRUDOT F3CRiI}CRD;VW
C11 CR1«FL25(IL1],IC21)]-FL13(XIC1],X020)]
£21 CR2FLIs(IL1],XIC2])]-FL1+C(XC1],TC2])1]

[3]1 VWeD -
[4] +(0=I[4])/CON
[5]1 vwec[2]

[&63] cOoM}

£713 SUMe(((CRIC1IxCR2[2T)~-CRILIIXCRAC1TIIIX(VW=-F[15I03]])
v

The Modified Function "threeviews", including an
extra oblique projection

v THREEVIEWS [[0] ¢
v THREEVIEWS F;jW
[1] A ORTHOGRAPHIC PROJECTIONS
[2] We "2 "2 22
{31 Fe —0.53 0.95 SCALE P
[4] A FRONT VIEW
[51 SKETCH —1 —1 O TRANSLATE P
C4] @A SIDE VIEW
£71 SKETCH { —1{ 0 TRAMNSLATE O ~90 0 ROTATE F
[8] A TOF VIEW
L93 SKETCH —1 | 0 TRAMSLATE 90 0 0 FOTATE P
[10] SKETCH 1,3 1,3 0 TRANSLATE 10 10 10 FOTATE P
[11] FETICLE
v

(ST S

The Attitude and Path Data

TRACE
0 0 0 130 7130 T200
0 10 0 98 98 780
0 20 0 70 T85 T20
0 40 0 40 775 0
0 60 0 20 7950 20
0 75 0 10 725 30
0 ?0 0 0 0 40
TRACEAX
0 7130 130 200
1 798 98 80
1 770 85 20
1 740 75 0
1 720 S0 ~20
1 10 25 730
1 0 0 740
0 0 0 0
1 0 0 0
C
2 100
DTOR

0.017453292

[131
£21l
€31
(W
£sl
£61
L73
£81l
[?1
€101
L1113
L1217

C11]
£21
£31
C41
£51
L&61
C71]
£81l
£?3
C101

Function "motion" for Fixed Vision System

v MOTIOH[[]V

¢ MOTIOM TRACEROWI;ROT;TRAN
We T30 T100 100 30
FLAMEMHO+fFROWSE[1]
0T0¢1

ISeW INTO SVE

FROWesp TRACEL51]

I«0
REF ¢

Ie«I+]

FOT¢«TRACELIj; 1 2 3]
TRAHTRACELI; 4 5 6]
ROT HID TFRAM

4+ (I(ROW)/REF

4

v HIDfOle

¥ FOT HID TRAN;OBRJIOWN NI} RT}R;J} JUDGE
A OBJDOWN¢é 1 1| SCALE OFEJ
OFJDOWHEOEJ

F¢«TRAN TFRAMNSLATE FROT ROTATE OFRJDOWM
FT¢C[2] PERSFECTIVE R

TeDS ¥FM RT[L; 1 2 31
A TeRTL; 1 2 3]
A

He1 900

I¢1

JUDGE ¢ (FLANEMNO,3)p0

[11] EVAL!ROWRe((FOWSELTI;1JSM)IA(ROWSELI;DRIIM))/N

£121]
L1321
£141]
£1S1
[161
L1713
£risl
L1911

- £201

213
r223
- [233
£243
€253
£261

JUDGE[X;J¢(VISIELE R[ROWF§]),I
TeXI4] '

4+ (ISFLAMNEMO) /EVAL

a JUDGE¢JUDGE[(&JUDGEL 3213351
Iel
FLOTS?

2(O#JUDGEL X517) /NEXT
JeJUDGELI$3]

ROWR¢ ((ROWSELJ$ 1 JSN)A(ROWSELJS2IIN)) /N
FILL T[CROWR}] :

DRAW T[ROWR}] USING COLOR C[1]
A «0
HEXT{Ie¢I+]

2{ISFLANENO) /PLOTS

fA

v

HEIL I

300 7200 T340
270 7180 7300
240 7160 T260
210 7140 "22

180 7120 7180
150 “100 140
120 780 7100

&0 T40 720
30 ~20 20
0 0 60

HELIXAX
0.000000000EQ
1.000000000E0
1.000000000E0
1.000000000E0Q
1.000000000E0
1.,000000000E0
1.000000000E0
1.000000000E0
1.000000000E0
1.000000000€0
1,000000000E0Q
0.000000000E0Q
1.000000000€E0

The HELIX Path Data Set

T2.199999404€2

5.615387607E7S

1.800000389€2
2.771281447E2
2.800000000E2
2.078440875E2
?.999998919E1

“7.48718349TET4

~6.000000324E1
T6.928203293E1
~4,000000000€1
0.000000000E0
0,000000000E0

2,000000000E2
1.800000000€E2
1.600000000€2
1.400000000E2
1.200000000€2
1.000000000E2
8.000000000E1}
6.000000000E1
4,000000000E1]
2.000000000E1
0.000000000E0

0.000000000E0 -

0.000000000£0

3.810512120€E2
4,000000000E2
3.117691229€2
1.599929697E2
T2.620514218E75
“1.200000162E2
~1.,732050870E2
~1.4600000000E2
T1.,039230466E2
T3.999999892€E1
0.000000000€E0
0.000000000E0
0.000000000E0

£11l
£21
£31
£41
[Sa
£é3
£73
£sl
£91l
L1031
Ci111
£121]
£131]
C142
[153]
L1661
[171
£i181

r13
23
£33
L41
LS
L43
73
£8l
93
[101
L1113
£123
£131
£143
£151
L1461
L1737
£131
£191
[201]
£212]

£221

£233
£241]
£253
[263
£273
£281
€29
£303

A

F

fA

A

R
R

Function ROBOT of Tracking Vision System

v ROROT[I[O] ¢
¢ FOEKOT HELIN FROWRIZROT,;TRANGR
We ~30 “30 30 30
EOMCLS¢ 5 3 F 0 50 SO 1 S0 S50 1 S50 ~S50 1 50
FLAHEMO«pROWSE[;1]
{1I0¢]1
DSeW IHTO SVPE
FOWepHELIXLS1]
I&0
EP!
Tel+
FeC[D)-HELIX[I;3]
FOTe¢™57,.29078x (T30(HELINIIFQ]+F)) yHELIX[I§17+0
TRAMNQ O yHELIXLIFTZ]
FOT HIDHEL TRAMN

0
E) WFM EOMCLS

FILL(W IMTO §
EFASE
4 (I(ROW)/FEF
v

QHIDHELL[]] ¥
v FROT HIDHEL TRAMN;ORJDOWH MH}I;RTFJs JUDGE
OFJDOWMe —1 | SCALE OFJ
OEJDOWH+OEJ
OEJDOWH(DyROT[2],0) ROTATE OEJDOWN
OERJDOWH(ROTL1]90y0) FROTATE OBJDOWH
Fe(TRANL 1]y TRAN[2],0) TRAMSLATE OEJDOWH
F¢ TRAM TRAMSLATE OEBJDOWM
FT«C[2] PERSFECTIVE R
FTe 0 0 0 TRAMSLATE RT
T¢DS MFM RT[3 1 2 331
TeRTL: 1 2 31

He1 900
Ie¢]
JUDGE«(FLANEMNO,3)r0

EVAL {ROWRe ((ROWSELT$1 JSN)A(ROWSELT$2I2H)) /N

F

]
2

JUDGE[LT;J«(VISIBRLE RLROWR;]),I
I¢I+]l
3 (I{PLANENO) /EVAL
JUDGE ¢ JUDGE[(AJUDGEL$23)41]
Tel
LOTS
+(0#AJUDGELT§1])/NEXT
JEJUDGEL T3]
ROWR¢e ((ROWSELJ$1JIN)A(ROWSELJ;2J2N)) /N
FILL TLROWR;]
DRAW TL[ROWR}J] USING COLOR C[1]
«0
EXT{TeI4]
+(I{PLAMNENO) /FLOTS

v

50 1 50 S0

Original Data Set Solarmax.vec

Provided by NASA/JSC

Sep 19 07:34' 1986

N
N
23]

))

e L3 0en 00 3 0ut et fob Gob Gt P b P e et ph et el et e e O e S O e et Ot et Ot O e et Ot et O b b e bt e e e e e O

3.1750
3.,1750
3,1750
3.1750
3,1750
3.1750
3.1750
3.1750
3,1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750
3.1750

10,5750

10,5750

1,9583
1,9583
1.9583
1,9583
1.9583
1.,9583
1.9583
1,9583
1.9583
1.9583
1.9583
1,9583
1.9%83

-1.,9583

-1.9%83
1.9583

-1.9583

-1.9%83

1.9583

-1.9583

-1.9583

solarmax.vec Page |

1.1266
-1, 1266
-2.4449
-2.4449
-1.,1266

1.1266

2.4449

2,4449

1.1266

1.1266
-1.1266
-1.1266
-1.,1266
-2.4449
"20 4449
'20 4449
-2.4449
-2.4449
-2.4449
-1.1266
-1.1266
-1.1266

1.1266

1.1266

1.1266

2.4449

2.4449

2.,4449

2.,4449

2.4449

2.4449

1.1266
-0.,28658
- 1 . 0158
-1.4025
-2.8774
'20 8774
-1,402%

-1.,0138 -

-0.2658
3.1442
2.4183
2.4183
33,1442

-0.2658

-0.2658

"00138

-1.0158

'110158

-1.4025

-1.402%

-1.4025

-2.8774

3.3375
3.3375
2.2383
-2.2383
‘30 3375

-3.3375 .

-2,2383
2,2383
3.3375
3.3375
343375
3.3375
3.33735
2.2383
2,2383
2.2383

-2.2383

-2.,2383

-2.,2383

-3, 3378

=3.3375

-3.3375

-3.3375
=3.3375
=-3.3375
~2,2383
-2,2383
-2.,2383
2.2383
2.2383
2,2383
3.3375
3.4825
2.2150
1.,9925
1.9925
-1.9925
-1.9925
-2.2130
-3.4825
-1.3000
-0.2417
0.2417
1.5000
3.,4823
3.4825
2:,21350
2.2130
2.21350
1.9925
1.9925
1.9925
1.9923

~

Sep 19‘07:34 1986

u—nOnn.—o—OOuo—-o—'puou——-o—ouo.—o»—o-o-no-onOno—-o.—-»o—..—-ou...o......o......o..—..-o—-.—o..—

1.,9583
i 9583
-1, 9583

1.,9583
-1.9583
-1.,9583

1.9583
-1.,9583
-1.9583

1.9583
-1.9583
-1.9583

1.95838
-1.9583
-1,9583

1.9583
-1.9583
-1.9583

1.9583
-1.,9583
-1.,93583

1.9583
-1.9583
-1.9583

1.9583
-1.,9583
-1.9583

2.8233

2.,3267

2.,3267

2.8233

2.,8233

2.8233

2,3267

2.3267

2,8233

2,8233

2.9166

2.9166

2,8233

2.,8233

2.8233

2.,3267

2.,3267

2.8233

2.8233

2.3267

2.3267

2.8233

2,8233

2.9166

2.9166

2.,8233
-3, 4583
-2.4166
-3.4%83

solarmax.vec Page 2

-2.8774
-2.8774
-2.8774
-2:.8774
-2,8774
-1 04025
-1 04025
-1,4025
-1.0138
-1.,0138
-1.0158
-0.2658
-0.2638
-0.,2658
3.1442
3.1442
3.1442
2.4183
2.4183
2.4183
2.4183
2.4183
2.4183
3.1442
3.1442
3.1442
'002658
'603191
12.81195
-8, 1255
-1.6342
-6.3191
-4,7574
11.2500
-9.6882
-3.1958
-3.9091
-2.7583
-2.7583
'40 04‘1
1.6342
6.3191
12,8113
8.1265
1.6342
3.1958
9.6882
11,2500

. 4.7574

4,0441
2.7383
2,7583
3.9091
0.0000
0.0000
1.9129

1.9925
1.9925
-1.,9925
'1099?5
-1.,9925
-1.9925
-1,9925
-1.,9925
-2,2150
-2.2150
-2.2150
-3,4825
-3, 4825
-3.4825
-1.5000
-1.5000
-1.35000
-0.2417
-0.2417
'002417
0.2417
0.2417
0.2417
1.5000
1.5000
1.5000
3.4825
4,7183
1.8275
-8.6941
-5.8032
4,7183
1.2108
-1.6800
-5.1866
-2.2958
-0.6950
-0.1667
0.1667
-0.3900
5.8032
'407183
-1.8273
8.6941
5.8032
2.2938
S.18686
1.6800
-1.2108
0.3900
-0.1667
0.1667
0.6930
2.2083
0.0000
1.1042

Sep .19 07:34 1986 solarmax.vec Fage 3

St Gt e 3 bt 0t ot s s bt b D D e O e D ot 0t et ot et et e et bm (D Ot O O 0 O e O e i e et e et ek b e b (et e et bk et bt e Bt

'30 4583
'20 4166
'30 4583
-3.,4583
-2, 4166
-3.4583
-2,2083
-3.4583
-3.,4583
-2.2083
-3,4583
-3.4583
-2.,2083
-3.4583
-3.,4583
=-3.4583
-1,2333
-3.4583
-1.2333
-3.4583
-1, 2333
-3.4583
-1.,2333
-3, 4583
-1.,2333
-3.4583
-1,2333
-2.2083
-2.3730
-2.3750
-3.4583
'30 4583
-2.3750
'20 3750
-3.4583
-3.4583
-3.,4583
-3, 4583
'30 4583
-2,3730
-2.3730
-2,3750
-2,3730

2.,8083

1,9383

1.9583

2,8083

2.8083

3.1730

3.1750

2.8083

1.9583

1.9583

2,8083

2.8083

1.9125
06,0000
0.0000
'109125
0.0000
=1.9125
0.0000
0.0000
1,9125
0.0000
1.9125
0.0000
0.0000
-1.,9125
‘109125
0.0000
0.0000
1.9125
0.0000
1.9125
0.0000
0.0000
0.0000
-1.9125
0,0000
-1.9125
0.0000
0.0000
0.0208
0.0208
0.0000
0.0000
-0.0208
-0.0208
0.0000
00,0000
0.0208
0.0000
-0.0208
0.0000
0.0000

0.0208

0.0000
0.0000
1.0591
1.0391
-1.0591
-1, 0591
1.0591
1.1266
-1,1266
-1.,03591
'1 ’ 059‘
’20 5575
-2.5573
-1.,0991

-1, 1042
0.0000
-2.2083
-1.1042
0.0000
1.1042
0.0000
2.2083
11042
0.0000
-1.1042
-2.2083
0.0000
-1.1042
1.1042
2,2083
0.0000
1.1042
0.0000
-1.1042
0.0000
-2.2083
0.0000
-1.1042
0.0000
1.1042
0.0000
0.0000
0.0000
0.0000
0.0208
0.0208
0.0000
0.0000
-0.0208
-0.0208
0.0000
0.0208
0.0000
-0,0208
-0.0208
0.0000
0.0208
-0.0208
2.3379
2.3373
2.3373
2,3373
2.3573
3.3373
3.,33795
2.3573
2:3575
1.03591
1.0591
2.3375

Sep .19 07:34 1986

O e Ottt bt et Qe Qe O QO e Ot e Ot it O+t bt e Ot e O 0t 1t bt O bt st D e e et O Sttt) 0t bt bt O 2t e O

3.17%0
3,1750
2.8083
1.9583
1,9583
2.8083
2,8083
3.1750
3.1750
2.8083
1.9583
1.9583
2.8083
2,8083
3,17%0
3.1750
2,8083
1,9583
1,9583
2.8083
2.8083
3,1750
3.17%0
2.8083
1.,9583
1.9583
2,8083

- 2,8083

3.1750
3.1750
2.,8083
1.9583
1.9583
2.,8083
2.8083
3.1750
3.1750
-2,8083
1.9583
1.,9583
2.8083
2,8083
3.1750
3.1750
0.1400
0.1400
-0.2792
0.1400
0.0000
0.1400
-0.2792
0.0000
0.0000
2.3833
2,3133
2.3133

solarmax.vec Page 4

'l . 1265
-2, 4449
'20 5575
=2.35573
-2, 5575
-2.55785
=2.5573
-2,4449
~2.4449
-2.3579%
-2.557S
-1.0591
-1.03591
-2.3575
~2.4449
-1.1266
-1.0591
-1.,0591%
1.0591
1.0591
-1.0591
-1,1266
1.1266
1.0591
1.0591
2.557S5
2.35795
1.0591
1.1266
2.4449
2.3575
2.3573
2.557%5
2,3573
2.357S
2.4449
2.4449
2.,35573
2.3579
1.0391
1.0391

235735

2.4449
1.1266
2.4183
2.,4183
2.4183
2.4183
2.9166
2.4183
2.4183
2.9166
3.,7333
0.13500
0.0730
-0.07350

3.3375S
2,2383
1.03591
1.,0591
-1.0591
-1.0591
1.0591
2,2383
-2,2383
'100591
-1.0591
-2,557S
-2.357S
-1.0591
-2,2383
=3.3378
-2.357%5
-2,5575
-2.35575
-2.3375
-2,3573
-3.337%5
-3.3375
=2.,3575
-2.557%
-1,0591
'100591
-2,557%
-3.3373
-2.,2383
-1.0591
-1.0891
1.0591
1.,0591
-1.03591
-2,2383
2.,2383
1.0591
1,0591
2.557S
2.3373
1.0591
2.2383
3.3375
0.2417
-0.2447
0.0000
0.2417
0.0000
-0.2417
0.0000
0.0000
0.0000
2.7800
2.7800
2.7800

Sep.dq 07:34 1986

-

”O“Ho.‘.‘o_poppop—-p‘wuwﬂmuo»omuOﬂnO»“O—..—o.‘pp.—»nn

2.3833
2,2533
2,2533
2,3833
2,3833
2,.5133
2,5133
2,5133
2.5133
2,5133
2,5133
2.3833
2.3833
2.3833
2,2533
2.2533
2.2533
2.2533
2,2533
2,2533
2.3833
2.3833
2,5133
2.5133
2.3833
2,2533
2.2533
2,3833
2,3833
2,5133
2.5133
2.5133
2.5133
2,5133
2.5133
2.3833
2,3833
2.3833
2.2533
2.2533
2.2533
2,2533
2,2533
2,2%33
2,3833

solarmax.vec Page 5

-0.1500
-0.0750
0.0750
0.1500
0.1500
0.0750
0.0730
0.0750
=0,0750
-0.0750
-0.,0730
-0.1500
-0.1500
-0.1500
=0.07S0
«0.07S0
-0.0750
0.0750
0.0750
0.0750
0.13500
0.1500
0.0750
-0,0750
'001500
-0.0750
0.0750
0.1500

0.1500 .

0.0750

0.0750

0,0750
-0.0750
-0.0750
-0.0750
-0.1500
-0.1500
'001500
-0.07S0
-0.0730
-0.0730

0.0730 -

0.073S0
0.0750
0.1500

2.7800
2.7800
2.7800
2.7800
2.5575
2:95373
2.7800
2.5575
2.357S
2.7800
2.3575
2.557S5
2.7800
2:3575
2.5575
2.7800
2,3575
2.3575
2.7800
2.35735
2,5575
-2.7800
-2.7800
'20 7800
-2.7800
-2.7800

~.-2.7800
.=2.7800

-2.557S
-2.5573
-2.,7800
-2.35579%
=2.355795
-2.7800
-2.,35575
-2.,5573
-2.7800
-2.353793
'205575
-2.7800
-2.,5575
-2.,3373
‘207800
~2.35573
-2.3375

APPENDIX B: FORTAN PROGRAM TO TRANSFER SOLARMAX DATA FROM

IBM 370 TO CELERITY C1200

FORTRAN program trans.f

Mzr 7 20:51 1987 trans.f Fage 1

program main
implicit realx8¢a-h,o0-z"
dimension x (500),y (S00),z{(500),1ibf (S00),node (50)
open (2,file="s.n")
open (l,file="s.57)
k=1
i=1]
10 read (1,X,err=30,end=30) igar, gar, x({i), y(i), = (i)
do 20 j=1,k
if ((x(i) .eq. x(j)) .and. (y(i) .eq. y(j))

. .and. (z(i) .eq. z(j))) then
if (i .eqg. 1) then '
5 = u (1)
»1 = (1)
ye = y({}1)
vyl = y(1)
s = = (1)
21l = =z (1)
ibf (1) =1
endi f
ibf (i) = j
go to 25
endi f
20 continue
b= k+1
ibfli) = k
wlk) = 3 (1)
y (k) = y{i)
z (k)Y = z (i)
if (k) LJ1t. us) e = xi{k)
if (x(k) .gt. #l) =l = x(k)
if (y(k) .1t. ys) vys = y(k)
if (y(k) .gt. yl) vyi = y(k)
if (z{(k) .1t. zs) zs = z{k)
if (=2(k) .gt. =1} =zl = z(k)
25 1 = i+}

go to 10
30 write (%,50) xs, xl, ys, yl, zs5, =1
50 format (46g913.6) :
do 60 j = 1,k
write (X,50) x(j), y(3), =z(j)
460 continue
kv = k
k = 0 .
70 read (2,%,err=99,end=99) n, (node(j),i=1l,n)
k = k+1l
do 80 j=1,n
node{j)=ibf {(node(j))
80 continue
write (x,100) n, {(node(j),ji=1l,n)
100 format (S0i14)
go to 70
99 close(l)
close(2)
write (¥,%) kv,k,’ {{{{{=m=== move this line to first row’
end

Coordinates vertices (before reduction)

Mar 4 13:57 1987 s.5 Fage 1
1 O, OOOOODO00eD) —-2.1507%9410%e—-16 —1.2T3T300000e0 0. QOO0000000
=z 1.912500000a0 -3.4583 —-1. 1042000000
= 1. 212500000e0 -3, 4587 1.104200000e0
4 =2.15079410%e-16 -1.2333 0L ODO0OD0O0O00e0
5 -2.180792410%e~-146 —-1.2333 0. 00000000020
6 -6.031047813e-16 —-Z.4587(0O 2. 208T00000a0
7 1.212500000e0 =2, 4582000000 -1. 10420000020
8 -2.15079410%9e-146 —-1.237 0. QOOOOOO0O0=0
g -2.18079410%e-14& 0L 000000000eD
10 -1.9212500000e0 ~1.10420000020
11 -6,0371047813e-14 =-2.208Z700000eC
12 -2.15079410%e-16 0. OO00O0000e0
13 ~-2.18072410%e-146 O, 000000000
14 -1.92125000000 1.104200000e0
15 -1.21Z500000e0 -1.104200000e0
1& ~-2.15079410%9e~-16 0, DOCODO0O00e0
17 -2.15072410%e-14 0, 0000000000
18 -6.031047817e-16 2. 2087000000
19 -1.912500000e0 1.104200000e0
20 -2.15073410%e—-146 0. OO000O00O0DE0
21 =2.15079410%e-14 0. 00OO0000G0HeD
23 1. 921ZT00000e0 1. 1042000000
2= -5, 03104731 7e~14 2. 208T0000020
. -2.15072410%e~16 —-1.27 O O00O00N000O0e0
1.0153800000e0 1.9588 2. 21500G0000e0
1.402500000e0 1.72587% 1.992300000e0
1.40Z500000e0 -1.958% 1.9F2500000e)

2. 215000000

2. 2150000000

1. 402500000e0 -1 .932500000e0

1.015800000e0 =2, 2150000000

1.01S800000e0 -2, 21500000020

1.402500000e) —1.99250000020

1.4028500000e0 -1.992500000e0

-2.418700000e0 =2.417000000e-1

= -2.418300000e0 2.417000000e~1
3 -2. 4183000000 2.417000000e-1
8 -2.418300000e0 ~-1.958300000e0 -2.417000000e~-1
39 -2. 4183000000 1.958300000e0 =2.417000000e-1
<40 0. 000000000e0 1.01580000020 1.958300000e0 2.215000000e0
41 1.000000000e0 1.015800000e0 -1.958300000e0 2. 213000000e0
42 1. 000000000e0 2.658000000e~1 -1.93830000020 3. 4825000000
I 1.000000000e0 2.6538000000e-1 1.958300000e0 3. 4825000000
44 1.0000000000 1.015800000e0 1.25B8300000e0 2. 2150000000
45 0, 0000000000 1. 4025000000 1.958300000e0 1. 9925000000
445 1.000000000e0 2.877400000e0 1.958300000e0 1.992500000e0
47 1.000000000e0 2.877400000Qe0 -1.958300000e0 1.992500000e0
48 1.000000000e0 1.402500000e0 -1.9583000000 1.992500000e0
49 1.000000000e0 1.402500000Qe 1.9258300000e0 1.992500000e0
SO 0,000000000e0 1.402300000e0 1.9238300000e0 —1.992500000e0
g1 1.000000000e0 1.402500000e0 -1.958Z700000e0 -1,992500000e0
S22 1.000000000e0 2.87740000Qe0 -1.958300000e0 —-1,992500000e0
ST 1.000000000e0 2.877400000e0 1.958300000e0 -1, 9925000000
54 1.000000000e0 1.4025000000 1.988300000e0 —1.992500000e0
55 O, 0000000000 1.015800000e0 1.2583000000 =2, 2150000000
56 1.000000000e0 2.658000000e-1 1.958300000e0 -3.482500000e0

R e IR 2

]
]

00 C0 00 GO0~ s s sy
[

i Lo At

i

1. 000000000e))
1. 0000000000
1. OGDOOOO00ed
0. OT00O0000e)

2. 4187000000

=-2.418T700000e0

=-3.1442000000

~2.418700000e0

YOOO0e(
DOOed)

-4, 2168600000e0
-2.418ZT00000e

-3, 73T 300000e0

~2. 718660

OO0

-1.9537=
-1.958:

—-1.958200000e0

1.938Z00000e0

1.9382 0e0)
1.958700000e0
—1.938Z00000e0

1.958Z0¢

o R

1

=2 FRZ000000e~]

ot

S.086TE86T1e~16

~2 . 7F2000000e~-1
i.4

2.877400000e0

,2}82750090090,,

1.000000000e0 =3

1. 00000000020
1. 000000000e0

1.000000000e0

1. 0000000000
1.000000000e0

1. 00000000 0e)

1. OOO0OO0O0O00e:

- =3.144200000e0

2. 658000000e~1
2.658000000e-1
2. 658000000e~1
3. 1442000000

-2.418300000e0
-2.4183000000
-3. 1442000000
2.4658000000e~1
1.015800000e0
1. 4025000000
2.877300000e0

1.

1.938300000e0

1.958300000e0
1.958300000e0

-1.958300000e0
-1.9 00000e0
1. 9583000000
1. 9582000000
1.958300000e0
—-1.95383000000

—1.,958300000e0

1.958300000e0
1.958300000e0
1.9358300000e0
1.,9583000000
1.958Z200000e0
1.958200000e0d
1.9258300000e0
1.958300000e0
1.958Z00000e0
1.3583T00000eD

L036T7586T1e-16
51062973216
0863586 I1e-16

S.0863138B6E1e—16

=X.4825¢

-3, 48250
=2, 215000

m e

T e e d o

0, OOCOOO0OO0eD

2.417000000e~-1

Q. QOOOOOD0NeD
O, OOO0O00O00e)

. 48250000020

1. 50000000020

-3.483500000e0

T=1.5060000000e0

=1.500000000e0

=3. 4825000000

25000000
Z.482500000e0

o

i. 5(:)1:)(_)(7_)7(,)(:)(:)(:)9(:)
e—1

2.417000C

<2, 417000000e-1

-=1,500000000e0

-1.992500000a0

Vertex indices for each plane
Mar 4 17:56 1987 s.n Fage 1

4 1 274
4 5464 7 8
4 g 1011 12
. 4 13 14 15 16
4 17 18 19 20
4 21 22 23 24
5 25 Z6 27 28 29
5 0 31 I2 33 34
5 IS5 36 37 I8 39
5 40 41 42 4T 44
S 45 44 47 48 45
5 50 51 52 53 54
5 55 S& 57 58 59
5 60 b1 &2 6T 64
5 65 &b &7 &8 67
19 7071 72 7T 74 7% T6& 77 78 7Y S0 £1 8T 8T 84 85 as 87 88
= 89 50 91 72 9%
5, 94 5% 94 97 93
5 9% 100 101 102 103
1z 104 108 1046 107 108 102 114 111 112 113 114 115 116
5 117 118 119 130 121
5 122 127 124 135 136
5 127 128 129 170 131
5 132 133 124 135 136
S 137 138 179 140 4t
5 147 143 144 145 146
5 147 148 149 150 151
7 152 153 1S4 15% 154 157 153
S 159 160 161 162 1&3
5 164 165 166 167 168
5 169 170 171 172 1773
5 174 175 176 177 178
5 179 180 161 1BZ 183
5 184 185 186 187 189
5 189 190 191 172 193
7 194 195 196 157 193 199 200
5 201 202 203 204 205
5 206 207 208 209 210
N 5 211 212 213 214 215
5 216 217 218 219 220
5 221 222 223 224 225
i 5 226 227 228 229 230
5 231 232 233 234 235
5 236 237 238 239 240
. 5 241 242 243 244 245
: 5 244 247 248 249 250
: 5 251 252 253 254 2S5
5 2546 257 258 259 260
5 261 262 263 264 265
5 T6b 267 2468 2469 270
5 271 271 273 274 275
5 276 277 278 279 280
5 281 282 2B3 284 285
5 286 287 288 289 290
5 291 292 293 294 2795
5 296 297 298 299 IT00

Mar 4 1Z:56 1987 s.n Fage 2

ZO1 302 307 T04 305
Z0s TOT7 I08 IO I10
211 212 313 214 315

J16 317 318 T19 320

321 322 323 324 IS
I26 327 328 329 330
I31 3II2 3I3 IF4 II5
IT6 3I7 IT/ ITI? T40

Z41 T42 34T TF44 Z45
3446 47 48 349 50
351 352 353 354 IES
IS56 I57 358 I59 Te0
T61 T2 I6T 364 TS
T&S TET T8 ITE9 IT70
371 T72 I73 374 7S
78 77 378 I79 T80
91 538% 383 T84 T8E
J86 TR7 I38 I8Y I90
I91 IRd 393 394 I95 3986 I97

_ll'l‘| ptELBURUBLROURUNONURUNORURURUNLNORGUNA N

d

PET—

Mar 8 00:13 1987

116 68

-15.0

15.0

-0.215079E-15 -1.23330

1.391250
1.91250

=-3.45820
~-3.488730

=0.60310SE-15 -3.45870

-1.91250
-1.91250

-3.43870
~-Z%. 45830

-0, 603105E-15 -Z,45830

1.01530
1.40250
1.40250
1.01580
1.40250
1.01580
1.01580
1.40280
-2.413830
-2.41870
-2.418720
-Z.41370
0. 245300
0, 2465800
2.87740
2.87740
2.87740
2.87740
0, 265800
0. 2658300
-3.13420D
=Z2.14420
-Z.14420
-%.14420
-2.41870
-2.41870
-2.41830
-2.%91660
=3.73330
-1.05%910
1.05910
1.08%910
~1.05910

-0.7S0000E-01
0.750000E~-01
0.7350000E-01

-0.750000E-01

0.150000
0. 130000

1.958Z0
1.95830
-1.928Z0
-1.988Z0
1.923Z20
1.925820
-1.95870
-1.935870
1.958Z0
1.98870
-1.729330
-1.93830
~1.9S520
1.95870
1.9532Z0
-1.95830
-1.922330
1.958373%0
1.9%3T0
-1.9252870
-1.95830
1.7587%0
1.95330
-1.95870
0. 130000
0. 140000
-0, 279200

2.80830
2.80830
1.95830
1.93830
2.5133Z0
2.51330
2.51330
2.51330
2.38330

2,38330

0.790000E-01 2,25330

0.730000E-01
—-0.750000E-01
—0,730000E-01

=0, 150000
-0, 150000
1.05910
-1.05910

2.258330
2.25330
2.285330
2.38330
2.328330
2.80830
2.80830

-15.0 15.0

Sattelite data after reduction

solar.s Page 1

-15.0 15,0

-1.10420
1.10420
=2, 20830
-1.10420
1.10420
2.20870

2.21500

L

1.99250
1.99250
2213500
-1.9%9250
=2, 21500

PR AR

2. 21500
~-1.%93250
-0, 241700
O, 241700
0. 241700
—0,. 241700
3.48250
3.482%0
1.99250
1.99250
-1.99Z50
-1.95280
~-3.43280
=3.48250
~1 . SO000
-1.350000
1.50000
1.50000
0,241700
-0.241700

2.55750
2.35750
2.957%0
2.55750
2.55750
2.55750
2.78000
2. 78000
2.55750
2.78000
2.55750
2.78000
2.55750
2.78000
2.35750
2.78000
-2.55750
-2.85730

Mar 8 00113

-1,05%10
1.05210

-0, 7S5OOO0OE~-0]

Q.730000E-01

0O, 750000E-01

-0, 7S0000E-O1

D, 150000

0. 150000

O, 7S0000E-0]

O, 75S0000E-01
=, 750000E-O1

=0, 7SO0O0O0OE-0]

—-0 . 150000

-G, 150000

2.55750

R’ [t e
PR

- e re
295750

Lot B 1 —har 3 — Lt
2.59750
|~ Sy .. f
—2.E5750
-3 EES e
s T

~Z.55750

Z2.55730
1.4872420
8H.128650
7. 48320
2. 19580
11,2500
4.75740
12.3115
5.71910
L. 723730
Z.20910
3.04410
2. 75870
-12.8115
-6.31%10
-4,79740
-11.2500
-3.19580
-9.68820
—1.63420
-8. 12650
-4,04410
-2.75830
-2.73830
=3.90910

2.44439Q

2.44490

1.126860
-1.12660
-2. 44490
-2.44490
-1.126560

1.12660

2.444390

2.44490

1787

1.95870
1.958Z0
2.91330
2.51330
2.51330
2.51330
8370
8330

25330

-

25330

t)
&y
I,

ZBIT0
Z2.Z2BITO
2.80870
2.808370
1.95870
1.95870
2,8087%0
1.95820
2.30830
1.7228%0

- P
PE - LIRS

2 T26T70
2.328670

2.82Z30

2.32670
2.82370
232670
2.8ZTT0
2.914660
2.827370

2.82330

AN SRS SE SRS

‘. '

2.91660
2.32670
2.82330
2.82330
2.32670
2.82330
2.32670
2.82330
2.32670
2.82330
2.91660
2.91660
2.823320
3.17500
3.17500
J. 172500
. 17500
3.17500
T.17500
3.17500
317300
10,5750
10,5750

solar.s Fage

)
.

-
£

J k3

- SS7S0
=-2. 55750
=2+ 78000
=-2.78000
-2.55750
=-2.55720
=-2.78000
-2.355730
-2, 78000

-2.55720

—-2.78000
-2.55750
—-2.78000
~-2.55750
1.05910
-1.08%10
—1,.05910
1.05910
-1.05910
=-1.05910
1.085%910
1.05910
-5, 90720
—3.69410
-5.18650
-2.29580
—-1.68000
1.21080
1.82750
4.718Z%0
0O, 166700
Q. 695000
Q. IF0000
0. 166700
-1.82750
-4,718320
-1.21080
1.68000
2.29580
S.18660
S.8032
8.69410
0.3F90000

~0.1656700

0.166700
0, 695000
2,23830
-2.23830
—-3.33750
-3.33750
—-2.23830
2.23830
3.33750
2.33750
2.23830
-2.23830

-

Mar

1.12660
=1.12660
—-Z2.4443C
-Z.44430
-1.126560

1.126560

[y

oA aNaeaasaaeaoARdAafarareasanansdbsbE

8 0017

e
J 000 RGO e e v

—
%]

14
17

-

o

--r

21
i)
22

26
21
37
41
47
45
47
49
51

=
o)

=

oo
57
=8
61
&3
&5
&7
&7
69
70
54
73
75
38
89
?2
94
7
77
80

82

.
S|

[L e
tle s Qe O R

-
u

[

—
0

-

.
L

{
fi

]
e
20
=25
bl

s

- -

0

4z
45
47
49
51
a1
44
54
58
61
63
65
67
57
65
70

53

73
75
37
69
0
21
93
o8
80
8z
84

1987

10.5730
10,5750
10.5750
10,5730
10,3730
10,5750
i

No-G s kY
ot o bk s b

10 11
14 5
18 19
=0 N
2310
4 5
27 14
28 29
=1 153
RN
T4 IO
R A
29 2
28 27
17 1&
9 40
<47 44
46 47
48 45
S0 48
Sz o
44 52
43 44
55 S6
S99 &0
62 SS9
b4 2
b6 64
68 66
60 48
63 61
71 72
56 71
74 S5
76 74
40 76
72 3
?1 92
@3 94
95 96
99 100
79 78
81 79
8= 81

37

4]
3
45
47
49
51
ag
53

7

a8

&1

&3

65
67
58
69
70
54
73
75
38
89
92
94
97
77
80
82

solar.s Fage 3

- '-"-."75(:,

A R R
-3. 33750
-2.22870

2.27870

R

3. 3T750

3.35750

50 52
57 &7

Mar

oA e o

8 001z

8%
101
102
103
104
1035
106
107
108
10%
110
111
112
117
114
115
116
110

88
102
103
104
105
106
107
108
101
110
111
112
117
114
115
116
107
109

1587

87
70
57
o4
7z

75

7

I8

&9
102
103
104
105
106
107
108
101
1156

solar.s Fage 4

85
&9
70
S=

=4

85
101
162
103
104
105
106
107
108
109
110
111
112
113
114
115
116
114 113

112

111 110

APPENDIX C: C PROGRAM FOR GRAPHICS MODELING

ON THE SUN WORKSTATION

/* shad.c */

#include <usercovre.-h>
#include <sun/fhio-h>

#include <math.h>
#include <stdio.h>

#include "demolik.h"

#definme MAXVERT &S00

#define MAXPOLY &00

#define MAXPVERT £€400

static int nvert, npoly;

static float #wldx, *wldys

static float #ndcx, *ndcyy

static char string[&1];

static float bhox{3][2];

static float planeq[MAXPOLY][d4];

static float vertices[MAXVERT]I[ZI];

static float normal [MAXVERTI[3];

static int cindex[MAXVERT];

static short normalcount[MAXVERTI;

static int rnpvert[MAXPOLY]

static short #pvertptr[MAXPOLY]

static short pvert[MAXPVERT]}

static float x1ist[10]), ylist[10], =1ist[10];
static float dxlist[10], dylist{10], 4zlist{10];
static int indxlistl[10];

static float red[256], grnl2S6], blulZS6]j
static float dred{2T&], dgrn[256], dhlulZSe]s
static int renderstyle=1}

static int renderhue=0;

static float xcut[21={0.,1.}, zcutO[I)={0.,0.}, zcut[2]={0.,1.3}3

maindargc, argv)
int argcs
char w*argv(];

{
int i, disopt, length = O, visihkle()}
static char str[] = "Enter your choice (1-5) ?"3
float Ix,lys12,vX,Vy,vZ,%, ¥, 2, 1lxr, lyr, l2rj
float cO,80,theta,templ,temp2;
if (argc < 2) { printf("Usage: shadeohj objfile\n"); exit(id;
if (getobjdat(argvii))) exit(2);
initvw()gs
get_view_surface(our_surface,argv);
start_up_core()} .
setvwpv()}

cycles

style_select();

new_frame()3s

create_temporary_segment();
move_ahs_2(300.,700.35

text("Enter the desired display option”);
move_ahs_2(TI0.,650.)3

text(“1) Still frame")j
move_aks_2(IT0.,A20.)3

text("Z) Fotate the viewer [defaultl");
move_ahs_ Z0(TT0.,530.)3

/*

text("3I) Fotate the ohject");
move_abs_2(33J0.,5£0.);
text("d) Potate the light source");
move_ahs_2(330.,530.);
text("S) Quit")y
move_ahs_2(300.,d20.);
text(str);
ingquire_text_extent_Z(str,wldi,wldy);
map_world_to_ndc_Z(#wldx,*wldy,ndcy,ndcy) g
set_echo_yposition(KEYBOARD,1,%#ndcx,*ndcy)d; */
set_echo_position(KEYRBOARD,1,0.5,0.47);
await_keyhboard (1000000000, 1, string, &length);
disopt = atoi(string);
close_temporary_segment();
if (disopt == Q) disopt = 23
lenigth = QO
switch (disopt) {
case 1:
new_frame()y
getxyz(&1x,&ly,&12,&vi,&vy,&vI)}
set_light_divection(lx ,ly ,1z)}
setvwpo(Vvi,Vy,vz)}
new_frame();
create_temporary_seqgmenit();
set_primitive_attributes(&PRIMATTS);
set_polygon_interior_style(SHADED);
drawohj();
close_temporary_segment()}

do {
await_keyhoard(0O, 1, strinyg, &length);
Y
while (length == 0);
hreaky
case 2

new_frame();
getxyz(&1x,&1ly,&1lz,8vx,&vy,&vi)}
set_light_direction(lx ,ly ,1z)y
theta = 0.3
do {
rew_frame();

cO = cos(theta);

s0 = gin(theta)y

X = vxX # cO + vz #* s50;
Yy = vy}

z = —-30 #% vx + vz % cO;
setvwpo(X,¥Y,2)}
create_temporary_segment()y
set_primitive_attributes(&PRIMATTS);
set_polygon_interior_style(SHADED);
drawobhji(>s

close_temporary_segment{();

theta = theta + .174%3 ;

awaitskeyboard(3000000, 1, string, &lengthd;

Y
while (length == Q)
breaks;
case 3%
new_ftrame()y
getuyz(&1lx,&1y,&1c,&vi,&vy &vzyg
cet lirht dirvectiond(ls ,ly (17 53

setvwrpo(vi vy,vz);
theta = .174535;
do {
rnew_frame()s
create_temporary_segment();
set_primitive_attributes(&PRIMATTS);
set_polygon_interior_style(SHADED);
drawocbj ()
close_temporary_segment();
cO = cos(theta);
sO = gin(theta)s
X = vx # ¢0 + vz * 803
Y = VvYj
z = -0 # v + vz % cO3
setvwio(x,yY,2)}
1ur = 1x # cO + 1z * sOj
lyr = lyj
lzr = =0 # 1x + 1z % cO3
set_light_direction{lxr ,lyr ,l2ar)j
for (i = O3 1 < nvert; i++) {
templ = cO # vertices[i][0] + sO * vertices[iJ[2Z];
temp2 = =50 % vertices[i][0] + cO % vertices[i][2]3
veartices[i][0] = templ;
vertices[i][2Z2] = templs
¥
await_keyhkoard(I000000, 1, string, &lengthd;
theta = theta + .17457 j

L
>
while (length == 0);
brealks
case 9t
new_framed()y
getryz(&1x,&1y,&12,8v,&4vy,&v2)
setvwpol{vx,vy,vI)}
theta = 0.3
do {
new_frame()s
c = cos(theta)y
80O = gin(thetady
x = 1lx # cO + lz # 503
y = lyj .
z = —-sO # 1lx + 1z # cOj
set_light_direction(x ,y ,2 23
create-temporary_segment(); }
set_primitive_attributes(&PRIMATTS);
set_polygon_interior_style(SHADED);
drawobj()} ’
close_temporary_segment()>; -
theta = theta + .17433 3
await_keyboard(3000000, 1, string, &length);
}
while (length == Q)3
breaksy - -
case S: .
shut_down_core();
exit()} -
default:
goto cycleg
Y

Joto cycles

by

style_select()

{

/®

static char str[] = "Enter your choice (1-5) ?";
static char stri(] = "Enter your choice (1-5) 7?";
int done, segnam, pickid, butnumg

int hue,lengthg

new_frame();

setvwpv();

create_temporary_segment();

move_abs_2(Z00.,700.)3;

text("Enter the desired shading style");

move_ahs_Z2(330.,£50.)

text("1) Wireframe display")y

move_ahs_2(330.,620.)3

text("2) Gray shading”");

move_abs_Z(3IT0.,570.);

text("3) Gouraud");

move_abs_2(330.,5&0.)%

text("d) Phong diffuse [default]");

move_ahs_2(3I30.,530.)3% *

text("S) Phong specular")g

move_aks_2(300.,430.)3;

text(str)g

- inquire_text_extent_Z2(str,wldx,wldy);

map_world_to_ndc_2(#wldx,#wldy,ndecx,ndcyd};

set_echo_position(HKEYBOARD,1,#ndcx,¥ndcy) s/

set_echo_position<(KEYBJARD,1,0.5,0.47);

await_keyboard(1000000000, 1, string, &length);

close_temporary_segment();

renderstyle = atoi(string) -1

if (renderstyle == -1) renderstyle = J;

new_frame()s

create_temporary_segment()s

move_ahs_2(IJ00.,700.)%

text("Enter the desired shading color");

move_ahs_2(3IT0.,650.)3

text("1) Gray")j

move_aks_2(330.,620.)3

text("2) Red")j .

move_aks_2(330.,590.)%

text("3) Green [detfaultl")y

move_abs_2(330.,3560.)3

text("d) Blue")y

move_abs_2(330.,3530.)3

text("3S) Yellow")t

move_abs_2(300.,480.)%

text(strldy
inquire_text_extent_2(stri,wldx,wldy);

map_world_to_ndc_2(#wldx,*wldy,ndcx,ndcy)s

set_echo_position(KEYBOARD,1,#ndcx,%ndcy)#/

set_echo_position(KEYBOARD,1,0.52,0.47)}

await_keyboard¢1000000000, 1, string, &length)j

renderhue = atoi(string) - 1}

it (renderhue == -1) renderhue = 24

close_temporary_se»ment(){ .]
if (rendertue == 0) define_color_indices(our_surface,0,2%%,ved,grn,klu;
else define_color_indices(our_surface,0,2%5,dred,dgrn,dblu)}

/% ambhient,diffuse,specular,flood,bump,bue,style #*/

hue = renderhues
switch (renderstyle) {

case 13 set_shading_parameters(.01, .%&, .0, Q., 7.,hue,0)j Lreak
case 2t set_shading_parameters(.0t, .96, 0, 0., 7.,hue,l);
case 3t set_shading_parameters(.01, .95, .0y 0., 7.,hue,2);
case 4% set_shading_parameters(.05, 50, .40, 0., 7.,hue,z);

default: break;
}
)

getryz(lu,ly,lz,vii,vy,vz)
float #lx,#ly,#lz,®#viy #vy,%¥v2}

{
- static char stri] = "u= "3
static char str2[] = "y= "3
static char stvr3I[]) = "z== Y3
static char strd[] = "x= "3
static char strS[] = "y= '3
static char strél) = "z= ;g
int lengthjy
setvwpv()y .

set_text _index i)y
rnew_frame();
create_temporary_segment()g

movg_aks_2(300,,700.); text("enter the 1light source position [default

/» set_echo_position(KEYBOARD,1,:3,.d);#/
move_aks_2{(J00. ,6280.)3
text(stridg
/* inquire_text_extent_2(stri,wldx,wldy);
map_world_to_wndc_Z2{#wldx,#wldy,ndcx,ndcy);
set_echo_position(KEYBOARD,1,#ndcx,*ndcy); %/
set_echo_position(KEYEDARD,1,0.31,0.6£5);
await_keykoard(1000000000, 1, string, &lengthdy
if (length == 0)
#1x = 0.03
else
#1x = atof(string)
move_ahs_2(300.,660.)y
text(str2)y
/% inquire_text_extent_2(str2,wldx,wldy)y
. map_world_to_ndec_2(*wldx,*wldy,ndcx,ndcy);
set_echo_position(KEYBOARD,1,#ndcx,*ndcy)s#/
set_echo_position(KEYBOARD,1,0.31,0.6d45)}
await_keyboard(1000000000, 1, string, &length);
if (length == 0)
#ly = 0.03
else
#ly = atof(string)s
move_abs_2(300.,6d40.)
text(stri)s L
/* inquire_text_extent_2(str3,wldx,wldy)}y
map_world_to_ndc_2(#wldsx,*wldy,ndcx,ndcy);
set_echo_position(KEYBOARD,1,%#ndcx,#ndcy)j®/
set_echo_position(KEYEDARD,1,0.31,0.623);
await_keyhoard(1000000000, 1, string, &length);
if (length == 0O)
#lz = Q.03
else

brealky

2 0.0,0.0,-1.03"

#lz = atof(string);
if ((#lx == 0.0) &% (#ly == (O.0Q) && (#lz == 0.0)) {
#1x = 0.03
*ly = 0.0;
*lz = =1.0;

-r

move_abs_2(3J00.,600.)3 text("enter the viewer position [default

move_abs_2(300.,3&0.)3
text(strd);

/* inquire_text_extent_2(strd,wldit,wldy);
map_world_to_ndec_2(*wldx,#¥wldy,ndcx,ndcydy
set_echo_position(KEYROARD,1,#ndcx,#ndcy) %/
set_echo_position(KEYRJARD,1,0.31,0.5£5);

await_keyboard{1000000000, 1, string, &length)j

if (length == 0)

*yvit = C);
else
#vy = atof(stringd;

move_aks_Z(Z00.,560.);
text(strS)g

/® inquire_text_extent_Z(strS,wldx,wldy);
map_world_to_ndec_Z(#*wldx,*wldy,ndex,ndey)d;
set_echo_position(KEYRBOARD, 1 ,#ndcx,*ndcy) g*/
set_echo_position(KEYBOARD,1,0.31,0.543);

await_leyboard(1000000000, 1, string, &length)d;

if (length == 0)

#vy = Q.03
else
#vy = atof(string)s

move_abs_Z(J00.,340.)3
text(stré);

/% ingquire_text_extent_2(stré&,wldr,wldy);
map_world_to_ndc_2(*wldx,*wldy,ndcx,ndcyd;
set_echo_position(KEYBCOARD,1,#ndcx,#ndcy) i/
set_echo_position(KEYBOARD,1,0.31,0.527);

await_keyboard(1000000000, 1, string, &length);

if (length == Q)

%#vz = 0.03
else
#vz = atof(string)s
if ((#vx m=m 0.0) && (#vy == 0.0) && (#vz == 0.0)) {
avx = 4000.03 ’
avy = J000.0%

#vz = 6000.03 " o
3
close_temporary_segment()y
>

start_up_core()

{
int is
float x,¥,2;

initialize_core(BASIC, SYNCHRONCOUS, THREED)j
our_surface->cmapsize = 236}
our_surface->cmapname[0] = \O';

° if¢initialize_view_surface(our_surface, TRUE)) exit(i);

celect_view_surface(our_surface)g
inyuire_color_indices(our_surface,0,25%,dred,dgrn,dbludy
for (i=1y i7=25%; i++) {

4000,

5000,

/% load color LUT #/

€000)3

redfi] = (float)i # 0.003921%¢&3;
grnli) = (float)i # 0.003721568&;
bluli] = (float)i * 0.00392156%;;
}

redf0] = 0.3 grn[0] = .73 blu[0] = O.;

define_color_indices{ our_surface,0,255,red,grn,blud}
/% ambient,diffuse,specular,flood,bump,hue,style #*/
set_shading_parameters(.01, .96, .0, 0., 7.,0,0)¢

initialize_device(KEYRUARD, 1)}

set_echo(KEYBOARD , 1 , 1)
set_echo_surface(KEYBOARD, 1, our_surface)g
set_keykoard(il, 30, "", 1);

setvwpv();

set_font(l);s

by

shut_down_core()

{

terminate_device(KEYEBOARD, 133
deselect_view_surface(our_surface);
terminate_view_surface(our_surface)s
terminate_core()s

3y

integetohjdat(filename)
char #*fileriame;

{

int i, §, k3

short vtmp, vi, vZ, v3;

float ftmp, maxd, scale, offset[3];
float x,y,z2,x0,y0,z0,length;

FILE #fptrg

it ((fptr = fopen(filename, "r")) == NUILL) {
printf("Can't open filet %s\n", filename);
return{is
}
fscanf(fptr, "%d%d", &nvert, &npoly);
if ((nvert > MAXVERT) ! (npoly > MAXPOLY)?) {
printf(“Too many object vertices or polygons\n")j
return(2);
) -
fscanf(fptr, “"XFfENERENFRENE", &bbox[0)[0], &bbox[Q][1], &bbox[1][0],
&bbox[13[1), &bbox[2]1[0]), &bbox[21[11);
maxd = 0.0y . .
tor (i = 03 1 < 33 i++) ()
offsetli] = (bbox(il[O0] + bbox[il[1]) / 2.0j%
bbox[i] (0] —-= offset(ily
bbox[i)J[1) -= offtset[i]}
if (bhbox(i1[0] > bbox[iJ[1]1) (
ftmp = bbox([i1][0]} :
bhox[11[0] = bbox(il(1]lj
bbox[i]J[1] = ftmps
}
if (maxd < bbox[il[1])
maxd = bhox[i]J (1]}

scale = 1000.0 / maxdy

for (i = Q3 i < 33 i++) {
bhox[i1]J[0] == scale;
bbhox[i][1] %= scale;

- }

for (i = O3 i < nvert; i++) {

fscanf(fptr, "%fAt%¢F", &vertices[i][0O], &vertices[i])(1],
&vertices[il[2]1);

vertices{i)([0] = (vertices[i][C]
vertices[ilJ[1) = (vertices[i][1)]
vertices[i][2) = (vertices[i][2]
normal[il{0] = 0.0 normal[i][1]
normalcount[i] = O3
}

offset[0)) # scaley
offset[1]) » scaley
offset[Z2])) # scaley
0.0; normal[il (2] = 0.03

k = 03
for (i = O3 i < npolys i++) {
fscanf{fptr, "%d", &npvertl[il);
it ((k + npvert{il)> > MAXPVERT) {
printf("Too many polygon vertices\n");
returmn ()
}
pvertptrli] = &pvertlk]y
for (j = 03 § < npvertlil; j++> {
fscanf(fptr, "%hd", &vimp)y
pvert{k++] = vitmp - 1}
}
planeq[il[0] = planeq{il[1) = planeq[ill2] = plareq[i][3] = 0.0;
vl = pvert[k — 1] v2 = pvert(k - 2]; v3 = pvert(k — 3]j

* for (3 = 05 § < 33 §++) {
planeq[i][0Q] += vertices{vi][1] =
(vertices[v2][2] ~ vertices[v3][2]);
planeq[il[1] += vertices([v1][0] #
(vertices[v3][Z2] - verticesIv2][Z]);
planeq[i][2] += vertices(vi][Q] *»
(vertices[vZ1[1] - vertices[v3][1));
planeq[i][3] += vertices[v1][0] »
(C(vertices[v3][1] % vertices[v2}([2]) -
(vertices[v2]l[1] * vertices[v3][{2])>;
vimp = viy vl = v2; v2 = vIj v3 = vimpy
}
/% it (planeq[il(3] > 0.0
for (j = O3 j <= 3y j++) planeqlil(j] = -planeq(illil;
< % L ———
- for (j = 13 § <= npvert{ily j++> { /% accum normls #/
vimp = pvertlk-jly
x = planeq[il[0); y = planeq[i)(1]1; z = planeq[i)(2]}
length = sqrt(x#x + y#y + z#2)}
normal{vtmpl (0] += x/lengthy
normal[vtmpl[i] += y/lengthy
normal [vtmpl[2) += z/lengthy
normalcount[vtmpl++y
) }
}
for (i = 03 i < nvert; i++) {
} normal[iJ[0] /= normalcount(il}

normal[iJ[1) /= normalcount(ils
normal[iJ[2) /= normalcount(il;
) . >
fclose(fptr)y
return(0);
})}

setvwpo(Vvi, VY, VI)
float v, vy, VI}
{
int i
tloat diagy, del, okjdist, near;

set_view_reference_point(vx, vy, vz)s
set_view_plane_normal(-vx, —Vvy, -vz)3}
set_projection(PERSPECTIVE, Oy Oy 04);
set_view_plane_distan:e(ES&-O);
if ((vy == 0.0) && (vz == 0.0))

set_view_up_3J(0.0, 0.0, vy)i
else

set_view_up_3(0.0, 1.0, 0.0);
set_window(-80.0, 20.0, -20.0, 0.0
diag = 0.03
for (i = Og i < 35 i++)

del = bbox[il[1] - bbou[il[0];

diag += del % dely

Y
diag = sgqrt(diag) / 2.03% .
objdist = sqrt(vi#vx + vy#vy + vI¥vI)j
near = (diag >= obhjdist) ? ohjdist/2.0 : ohjdist-diagj
set_view_depth(near, obhjdist + diag)js
set_window_clipping(TRUE);
set_front_plane_clipping(TRUE);
set_back_plano_clipbing(TRUE);
set_viewport_3(.12%, LE74, 0., 749, 0.0, 1.0)3
¥

static float inveform{dl(d]ls

drawohj ()
{
int i3
float %,y 24%0,y0,20,lengthj
char chj

if (renderstyle && renderstyled3)
map_ndc_to_world_3(-348., IdT., —€70., &x,8y,42)%
° map_ndc_to_world_3(0.0, 0.0, 0.0, &%0,4y0,4&20)
B X ~= X0} Yo== yO3 2z —= zO;Zt:' CEE
length = sqrt(x#x + y#*y + z%2)}
if (length '= 0.0) T T
x /= lengthy y /= length; 2z /= lengthy
>) S :
for (i = 03 i < nverty i++) (
cindex{i] = - S .
tabs(normal {iJ[0)#x snormal{iJ[1]#y +normal[i)[2]#z)> = 254.3
it C(cindex[i] < 4> cindex[i] = 4}
if Ccindex[i] > 248) cindex([i] = 2483
} S . ' e
/» inquire_inverse_composite_matrix(invxfbrm3} w7 :
it (renderstyle == 3) set_zhuffer_cut(our_surface, xcut, zcut, 233
else set_zhuffer_cut(our_surface, xcut, zeuto, 2y
for (i = 03 i < npoly; i++) {
/% if (visible(planeqCil)> */
drawface(id})

¥

int vigihbled(plnd
float plwills
{
int i;
float c3

c = (:).C);
for (i = O3 i < d3j i++)
c += invxform[ZJ[i] * plnlil;

-

return{c < 0.0)3

bs
drawface(p) int yp;
{
int i, J, k3
short »ptyg
ptr = pvertptylpls
for (i = 03 i < wnpvertlpls; i1++) {
J = #ptr+ty .
wliet[i] = vertices[JI[0]: ylist(i]l = vertices{jl(1];
zlist[i] = vertices[Jjl[Z];
if (renderstyle < Z) {
, indxlistli] = cindex[Jilj
“ : Yelse { '
dxlist[i] = normalljl[0]); 4dylistlil = normall[J][1];
dzlist{i] = mormal[Ji][2];
i }
>
1f (renderstyle < Z) {
if (venderhue)d {
j o= indxlicet{0)==2y if (J > &2) j = 623
set_fill_index(j + renderhue*bd —63);
b4
else set_fill_index(indxlist(0]);
}
else if (renderstyle == 2) {set_vertex_indices(indxlist, npvertipld;)
else (set_vertex_normals(dxlist,dylist,dzlist,npvert[p]);}
if (renderstyle == 0) polyline_aks_ 3¢ wlist,ylist,zlist,npvertipld;
else polygon_abs_3(xlist, ylist, zlist, npvertipl);
3 -

" gtatic float maxvw, vwpp, maxvdims
static float vlix, vhy, vfz, vdx, vdy, vdz;
ctatic float minleft, maxright, minbot, maxtop, minback, maxfront;

initvw(d
{
int i3
float ftmps

ftmp = khou[0OJ[1];
far £1 = 13 1 ¢ T3 i44)
if ‘hhov[i3it]) - ftmpd
fitmp = hhaxw {13013
many = el 3 fLmpyes
Vipe,e ST Te Y E e EAE RO ¥ B

setvwpv(

int insi

float

My

maxvdim = maxvw — ceill(vwppdg
A% 1 ¥ = (bt'O)'! [(:’] [l:)] + maxvw) V4 VW\-'-'}'J :

vhy = 100.0 + (hkhox[1]J[0] + manvwd / wvwppg

vz = S20.0 - (kkox[Z101] + maxvw) / VwWpp;
vidy = (Bbox[O0[1] = khox[DIL0]) /7 vwipg
vdy = (hhox[1]J[1] - hbbox[11[01Y / vwpp;

vidz = (hhbou[2Z)01]) - hEox[ZI00]) /7 vwpps
minleft = hhox{[0J[0] - S.03

mauright = hhox{01[1] + 5.0

minbot = hbhox{11{0] - 5.0;

maxtop = hbhox[1]J[1] + .03

mintack = bbox[2]J[0] - S.04

maxfront = hhox[Z)[1) + S.0;

¥

)

{

set_view_reference_point(0.0, 0.0, 0.0)
set_view_plane_normal(D-O, 0.0, =1.0);
cet_view_plane_distance(0.0)3
cet_projection(PARALLEL, 0.0, 0.0, 1.0)
cet_view_up_T(0.0, 1.0, 0.0);.
cet_window(0.0, 102T.0, 0.0, 7&7.0);
cet_view_depth(0.0, 1.0);
set_window_clipping(FALSE);
cet_viewport_Z(0.0, 1., 0.0, .75, Q.0,

¥

deohj (e Yo =2

Ye 2%

{

if ¢ < minlefty |1 (Gt & maxrightld
returnn (0

if (¢y < minbot)d |1 (y » maxtopd)
returndo)s

if (¢(z < minkack)
returm(Q)s

returndl);

ks

{(z » maxfront))

.
3

.
L]

1.3

Data "torso.s"

ol

7 10

T T0 110 —d

.....
.......

—2+d4ddI00000e 0
—2.4d4d300000e

—2.44d700000e0
=2.dddI300000e0
-2.3dd700000e0Q

~Z2.4343000000

=1 . 1266000000

-1 . 1 26A00000e)
—1.126600000e0
11266000000

1. 126000000
11266000000
Z2.343a47900000e0
2« 43437000000
113266000000
=1 1 26000000
~-2.3d4a4200000e0
-2.444900000e0
—1 .. 124000000

1. {1 ZAE00000e0

1 22 475

£ 7 53 10

11 12 17 14
16, 17 {3 19
24
o9
. O A A |
36 37 38 39
41 42 43 44

aq

15
20
.

0

cwp
]

40
q3

T. 1750000000
1. 0S7500000e1
1.0%27500000e1

1.097300000e 1
1.057500000e1

1.057500000e1
1..057500000et
1.057500000e1
F175000000e0
1.057500000e1
1.057500000e1
1 .057300000e1
3 173000000
2.173000000e0
1.037500000e1
1.0 F?(')(')(')(')l')e i

......

1.057500000ed
Z 1750000000
T 1730000000
1.057500000e 1
1.057500000e1
1.0573500000e1
3+4175000000e0
1.057300000e1
1.0575000Q0e!
1.057500000e1
1. 057500000e1
1.0537500000e1
1.057500000e1
1.057300000e1
1.057500000e1

1.057500000e1

46 47 48 49

=2 2TSTO0O0O00 O

2 e 2TETO0000e0
-
L

BTOOOOCe 0

=3 IJI750Q000e
=3 3T7500000e0

=2 2IETOQOO00e O

— 2 PIRIOQO00O

=3 3T7S00000e0
=3 3T7T00000e O

=3« ITT7EO0000e 0
=T ITTSO0000eO

~3.3IT7500000e0

-2 ITT7E00000e
=R FZT7E00000e)
-2 2T8T00000e0
2e2I2BTOO000e)
2 ZTBT00000e

IT7EO00000e0)

TIATSO0OO0O0a0

IRT7S00000e

ITT7SO0000e0
IT7S00000e0
IT7S0O0000e0
ITT7ESO00000e0

SN OO % R I % R Y S T O O

. e

f ZTSTO0000e0
2 ZTIZTOQO00e
S 3IE7500000e0
S ET7S00000e0

« 2TET00000e0
Z23IZT00000e0

W RN AR

« ZE7T00000e0
e SIR7S50Q000R0

23EI00000e0
23330000020
IT7S00000e0
SIERTSO0000e0

e Z2TETOOOO0e

1
J

Noise Program: temp.c

itiiiﬁiiﬁtﬁ*iiitt*t*iitiii"*it*t*it*tttttt*i'tti'ttiti*iitit*'*iiitttiitﬂtii

* Thu Aug 13 12:08:59 1987 *
* /julius/j2/.yhl/nasa/temp.c *

*tiitﬁiti**i***iﬁ*iit*i**i*ii*t****i*!ttii**t**ttii*t*i*tit*iﬁi*itiiiﬁitti!tt

/*****t'iiﬁti*iii*ti*it*i**i*ti*itt***i*t**ttttt*tit**t*ttﬁit*tiiti*/

/* temp.cC */
/* alias cscr tem */
/* £77 -£68881 -0 !'* !'*.c -lfortd -lcore -lsunwindow -lpixrect -lm */
/* width = 462(7 sin cycles), height = 325 . */
/* Output is to 19-inches bit-mapped color display having */
/* 1152 by 900 pixels */

/***tit*iii*****iii***t*t*ii**t*ii*ﬁ***i*it*tt*ititttiti*ttt!ii*tﬁit/

#include <usercore.h>

#include "demolib.h"

#include <sun/fbio.h>

#include <math.h>

#include <stdio.h>

#include <sys/file.h>

#include <pixrect/pixrect_hs.h>
#define COLOR_VWSURF (ddname) {»»,"v,0,ddname,0,256,"%,0,0};
struct pixrect *screen; '

#define MAXVERT 500
#define MAXPOLY 500
#define MAXPVERT 3000

static int nvert, npoly:

static float *wldx, *wldy;

static float *ndex, *ndcy:

static char string(81];

static float 1x, nlx, ly, nly, 1z, nlz;
static float bbox([3] (2]

static float planeq[MAXPOLY] [4];

static float vertices [MAXVERT] (3];

static float normal {MAXVERT] (3] :

static int cindex [MAXVERT], cpindex[MAXPOLY];
static short normalcount [MAXVERT];

static int npvert [MAXPOLY);

static short *pvertptr [MAXPOLY];

static short pvert [MAXPVERT];

static float x1list [MAXVERT], ylist [MAXVERT], z1list [MAXVERT):
static float dxlist [MAXVERT], dylist [MAXVERT], dzlist [MAXVERT];
static int indxlist [MAXVERT]:

static float bred[256), bgrn{256]}, bblu[256]:

static float cred[256], cgrn(256]1, cblul256];

static float ambient, diffuse, specular, flood, bump;

static int renderstyle = 1;
static int renderhue = 0;
static float xcut (2] = {

0., 1.
). zcut0(2]) = {

0., 1.

b

}:

int
int

zcut (2] = |
0., 1.

bwa2dd () ;
pixel[560][440], width, height;

atruct vwsurf vwsurf =
COLOR_VWSURF(bedd);
struct suncore_raster raster;

int autodraw, debug, noise;
void normlig(}):
MAIN_()
{
void blkscr():
double dseed, dvalue;
double unit, amp = 14.;
float ggnqf_(), fvalue;
float factorl, factor2;
int cycles = 70;
int i, j:
int ax0, ay0, ax, ay:
short temp, vsin, vdsin, vnormal;
int disopt, length = 0, visible():
float angle = 0.785398163; /* 45 degree */
static char str[] = "Enter your choice (1-3) 2"
float vX, VY, VvZ, X, Y, Z lxr, nlx0, lyr, nly0, lzr, nlz0;
float ¢0, cc0, s0, cs0, theta, ctheta, templ, temp2;
char argv{], yn:

printf("objfile : ")’

scanf ("%s", argv):
printf("noise ? (1/0): "):
scanf ("%d", é&noise):

printf (Tautodraw ? (1/0): ");
scanf ("%d", &autodraw);
printf ("debug ? (1/0): "):
scanf ("%d", &debug):’

getobjdat (argv);

start_up_core(): o
set_p:imitive_pttributes(&PRIMATTS):
inquire_color_indices(&vwsurf, 0, 255, cred, cgrn, cblu);
for (L = 1; i <= 255; i++) { /* load color LUT */

/* bred(i] = (float) i *0,003921568;
bgrn{i) = (float) i *0.003921568;
bbluf{i] = (float) i £0.003921568; */
i bred(i] = (float) i *0.0033064207 + 0.15686272;
bgrn(i) = (float) i *0.0033064207 + 0.15686272;
bblu{i] = (float) i *0.0033064207 + 0.15686272;
}
cycle:

cred(0] = 0.6;

cgrn(0] = 0.0;
cblu(0] = 0.6;
define_color_indices(&vwsu:f, 0, 255, cred, cgrn, cblu):
set_text_index(255);
/ﬁ
* bred[0] = 60; bgrn(0] = 60; bblu[0] = 60; bred(255] = 40;
* bgrn(255] = 40; bblu[255] = 40; define_color_indices (&vwsurf,
* 255, bred, bgrn, bblu):
* ambient,diffuse, specular, flood,bump, hue, style
* set_shading_parameters (.01,.96,.0, 0., 7., O, 0):
*/
style_select ();
new_frame();
create_temporary_segment();
move_abs_2(300., 700.);
text ("Enter the desired display option”);
move_abs_2(330., 650.);
text ("1) Still frame");
move_abs_2(330., 620.):
text ("2) Rotate the viewer");
move_abs_2(330., 590.);
text ("3) Rotate the object {[default]"):;
move_abs_2(330., 560.);
text ("4) Rotate the light source"):
move_abs_2(330., 530.):
text ("5) Quit"):
move_abs_2(300., 480.);
text (str);
set_echo_position (KEYBOARD, 1, 0.5, 0.47);
await_keyboard (1000000000, 1, string, &length);
disopt = atoi(string):
close_temporary_segment ()’
if (disopt == 0)
disopt = 3; /* default @@Q@A& */
length = 0;
if (debug) |{

printf(“\n\n***tittiiiii****it*iii*****itiit"'
T Y S 1202222222222 32222 3222 22 22 2 2 R A0 £ AN LN

} _
switch (disopt) |
case 1: /* Still Frame */

new_frame();
getxyz (&lx, &ly, &lz, &vx, &vy, &vz);
set_light_direction(nlx, nly, -nlz):
setvwpo (vx, vy, Vvz)i
if (debug) {
print£("Still frame\n");
printf("view : 8f,%f,8£\n", vx, vy, vz);
printf("light : $£,%f£,%£\n", nlx, nly, nlz);
}
create_temporary_segment ();

0,

/* sets all the primitive attributes to their default values */
set_polygon_interior_style (SHADED);

if ('noise) {
new_frame():
drawobi () ;

} else |

screen = pr_open{"/dev/bwtwol");

blkscr{):

drawobij();

width = 560;

height = 440;

ax0 = (1152 - width)

!/ 2;

ay0 = (900 - height) / 2:

for (j = 0; j < height:
i < width;

for (1 = 0;
ax = ax0 + i;
ay = ay0 + j3;

j++) |
1 = i++) {

pixel(i] [j} = pr_get(screen, ax, ay):
pr_put (screen, ax, ay, 0):

}
blkscr ()

unit = 6.283185307 / width * cycles;

dseed = 123457;

ax0 = 8;
ay0 = 5;

for (j = 0; j < height:; Jj++) |

for (i = 0;

i < width:

i = i4+4) |

temp = pixel(i)[3]:

vsin = temp + (short)

vdsin = temp + (short)

(amp *
sin{unit * (double)
{amp *
sin{(double) i * unit) *
sin((double) j * unit));

(1))

dvalue = ggngf_(&dseed);
fvalue = *{(float *) &dvalue):

"vnormal = temp + (short)

ax = ax0 + i;
ay = ay0 + j;
pr_put (screen,
pr_put (screen,
pr_put (screen,
pr_put (screen,

!

scanf ("%d"”, &i);
pr_close(screen);
free_raster(&éraster);

(amp * fvalue);

ax + 576, ay, temp);
ax, ay, vsin);
ax, ay + 450, vdsin);

ax + 576, ay + 450, vnormal):

}

close_temporary_segment();
do |(
await_keyboard(0, 1, string, &length):
}
while (length == 0);
break;
case 2: /* rotate the viewer */
new_frame();
getxyz (&1xr, &lyr, &lzr, &vx, &vy, &vz);
set_light_direction(nlx, nly, -nlz):;
if (debug) {
printf("light : %f,%f,%f\n", nlx, nly, nlz);
}
setvwpo (vx, vy, vz);
theta = 0.;
1lx = nlx;
ly = nly;
1z = nlz;
X = UX;
y = vy:
z = vz;
if (debug) {
printf("rotate the viewer\n"):
}
do {
new_£frame();
if (debug) |
printf("view : $f,%f,%f\n", x, Yy, 2);
printf("light : %f,%f,%f\n", lx, ly, 1l2);
) .
create_temporary segment():
set_polygon_interior_style (SHADED);
drawobj():
close_temporary segment ();
theta = theta + angle:;
c0 = cos(theta):
s0 = sin(theta);
x = vx * c0 + vz * 30;
y = vy:
z = =30 * vx + vz * c0;
setvwpo({x, y, 2);
1x = nlx * ¢0 - nlz * s0;
ly = nly;
1z = -30 * nlx - nlz * c0;
set_light_direction(lx, ly, 12z);
/t
* for (i = 0; 1 < nvert; i++) { templ = cO *
* vertices[i] (0] + s0 * vertices[i)[2); temp2 = -s0
* vertices{i])(0) + c0 * vertices([i}[2):
* yertices{i]) (0] = templ; vertices(i) (2] = temp2;)

*/
await_keyboard (3000000, 1, string, &length);

}
while (length == 0):
break;
case 3: /* rotate the object */
getxyz (&lxr, &lyr, &lzr, &vx, &vy, &vz);
set_light_direction(nlx, nly, -nlz);
if (debug) {
printf("light : %f,%f,%f\n", nlx, nly, nlz):
}
theta = 0.;
ctheta = 0.;

nlx0 = nlx;

nly0 = nly;

nlz0 = nlz;

if (debug) {
printf ("rotate the object\n"):

}

do {
new_frame ()
c0 = cos(theta):;
s0 = sin{theta);
ccO = cos(ctheta);
cs0 = sin(ctheta):

Xx = vx * c0 + vz * s80;

y = vy:

z = -s0 * vx + vz * c0;

setvwpo(x, Yy, 2).;

nlx = nlx0 * ccO0 + nlz0 * cs0;

nly = nly0;

nlz = -¢cs0 * nlx0 + nlz0 * cc0;

/* set_light_direction (nlx, nly, -nlz); */

if (debug) {
printf("light : %f,%f,%f\n", nlx, nly, nlz);
printf("view : $f,%f,%f\n", x, ¥y, 2)7;

} :

create_temporary_segment () ;

set_polygon_interior_style (SHADED),

drawobij():

close_temporary_segment():

theta = theta + angle;

ctheta = ctheta + angle;

await_keyboard(3000000, 1, string, &length);
)
while (length == 0);
break;
case 4: /* rotate the light source */
new_frame();

getxyz(&lxr, &lyr, &lzr, &vx, &vy, &vz);
setvwpo (vx, vy, VvzZ):;
if (debug) |
printf ("rotate the light source\n");
printf ("view : 3£, %£,%£\n", vx, vy, vz);
}
theta = 0.;
nlx0 = nlx;
nly0 = nly:
nlz0 = nlz;

do {
new_frame();
c0 = cos(theta):
s0 = sin(theta);
nlx = nlx0 * ¢0 + nlz0 * s0;
nly = nly0;
nlz = -s0 * nlx0 + nlz0 * cO0;
if (debug) {
printf ("vertices(%d] : (%£,%F,%£)
indxlist = %d\n", i, xlist{i], ylist(i], zlist(i],
indxlist{i]);
}
create_temporary_ segment ();
set_light_direction(nlx, nly, -nlz);
set_polygon_interior_style (SHADED)/
drawobj () ;
close_temporary_segment ()’
theta = theta + angle;
await_keyboard (3000000, 1, string, &length);
}
while (length == 0);
break;
case 5:
shut_down_core{)’
exit ()
default:
goto cycle;
) .
goto cycle:
}

style_select ()
{

static char str{] = "Enter your choice (1-6) 2?%;
static char strl[] = "Enter your choice (1-5) ?":
int done, segnam, pickid, butnum;

int hue, length;

new_frame():

setvwpv ()’
create_tempo:ary_segment():
set_text_index(235);

move_abs_2(300., 700.):
text ("Enter the desired shading style"):
move_abs_2(330., 650.);
text ("1) Wireframe display");
move_abs_2(330., 620.):
text ("2) Gray shading (default]™):
move_abs_2(330., 590.);
text ("3) Gouraud");
move_abs_2(330., 560.):
text ("4) Phong diffuse"):
move_abs_2(330., 530.);
text ("S) Phong specular"):
move_abs_2(330., 500.):
text ("6) Quit"):
move_abs_2(300., 480.):
text (str):
set echo_posit;on(KEYBOARD, 1, 0.5, 0.47);
await_keyboard (1000000000, 1, string, &length):
close_temporary segment();
renderstyle = atoi(string) - 1;
/* default */
if (renderstyle == -1)
renderstyle = 1;
if (renderstyle >= 5) |
shut_down_core();
exit();
}
new_frame(});
create_temporary segment();
move_abs_2(300., 700.):
text ("Enter the desired shading color™);
move_abs_2(330., 650.);
text ("1) Gray [default]"™);
move_abs_2(330., 620.):
text ("2) Red"):
move_abs_2(330., 590.):
text (*3) Green®);
move_abs_2(330., 560.):
text ("4) Blue®);
move_abs_2(330., 530.):
text ("S5) Yellow"):
move_abs_2(300., 480.):
text (strl);
set_echo_position(KEYBOARD, 1, 0.52, 0.47);
await keyboard(lOOOOOOOOO, 1, string, &length):;
move_abs_2(30., 500.):
text("ambient(o 00),diffuse(1.00),specular(0),£flood(0),bump(7) 27);
scanf ("SEfS£LEREVE", Gambient, &diffuse, &specular, &flood, sbump) ;
close_temporary_segment ();
renderhue = atoi(string) - 1;
if (renderhue == -1)

renderhue = 0; /* default Q@QREREE */
/* ambient,diffuse, specular, flood,bump, hue,style */
hue = renderhue;
if (ambient == 0 §& diffuse == 0 && specular == 0
&& flood == 0 && bump == 0) (
ambient = 0.00;
diffuse = 1.00;
specular = 0.0;
flood = 0.0;
bump = 7.0;
}
switch (renderstyle) {
case 1:
set_shading_parameters (ambient, diffuse, specular, flood,
bump, hue, 0);
break:;
case 2:
set_shading_parameters (ambient, diffuse, specular, flood,
bump, hue, 1l);
break;
case 3:
set_shading_parameters(ambient, diffuse, specular, flood,
bump, hue, 2);
break;
case 4:
set_shading_parameters(ambient, diffuse, specular, flood,
bump, hue, 2):;
break:
default:
break:;
}
}

getxyz (lgtx, lgty, lgtz, vx, vy, vz)

float *1gtx, *1lgty, *lgtz, *vx, *vy, *vz;
{

static char strl[) = "x= ";

static char sStr2[) = "y= ";

static char str3[] = "z= "

static char str4[] = "x= ";

static char strS5[] = "y= ";

static char str6(] = "z= ";

int length;

setvwpv();

new_frame();

Ccreate_temporary segment ():

move_abs_2(300., 700.); -

text ("enter the light source position [default : 0.0,1.0,1.0]");
move_abs_2(300., 680.);

text (strl):;

set_echo_position(KEYBOARD, 1, 0.31, 0.663):

await_keyboard (1000000000, 1, string, &length);
if (length == 0)

*1gtx = 0.0;
else

*1lgtx = atof(string):;
move_abs_2(300., 660.):
text (str2):;
set_echo_position(KEYBOARD, 1, 0.31, 0.645);
await_keyboard (1000000000, 1, string, &length):
if (length == 0)

*lgty = 0.0;
else

*lgty = atof(string);
move_abs_2(300., 640.):
text (str3):
set_echo_position(KEYBOARD, 1, 0.31, 0. 625);
await_keyboard(1000000000, 1, string, &length);
if (length == 0)

*lgtz = 0.0;
else

*1gtz = atof{string);

/* default light direction */

if ((*lgtx == 0.0) && (*lgty == 0.0) && (*1lgtz == 0.0)) |
*1gtx = 0.0;
*1gty = 1.0/
*lgtz = 1.0;

}

normlig(*lgtx, *1lgty, *lgtz):

move_abs_2(300., 600.):
text ("enter the viewer position [default : -1000, 2200, 50001");
move_abs_2(300., 580.); ' -
text (strd);
set_echo_position (KEYBOARD, 1, 0.31, 0.565);
await keyboard(lOOOOOOOOO, 1, string, &length);
if (length == 0)

*yx = 0;
else

*yx = atof(string);
move_abs_2(300., 560.);
text (strS) ;
set_echo_position(KEYBOARD, 1, 0.31, 0.548);
await_keyboard (1000000000, 1, string, &length);
if (length == 0)

*vy = 0.0;
else

*yy = atof(string):
move_abs_2(300., 540.);
text (strb);
set_echo_position(KEYBOARD, 1, 0.31, 0.527);
await_keyboard (1000000000, 1, string, &length);

if (length == Q)
*vz = 0.0;
else
*vyz = atof (string):

/* default view direction */

if ((*vx == 0.0) && (*vy == 0.0) && (*vz == 0.0)) |
*yx = -1000.0;
*yy = 2200.0;
*yz = 5000.0;

}

close_temporary_ segment ();

}

start_up_core()
{

int i;

float X, ¥ Zs

if (initialize core(DYNAMICC, SYNCHRONOUS, THREED))
exit (1)

if (initialize_view_surface(svwsurf, TRUE))
exit (2);

if (select_view_surface(&vwsurf))
exit (3);

initialize device (KEYBOARD, 1);
set_echo (KEYBOARD, 1, 1);
set_echo_surface (KEYBOARD, 1, &vwsurf);
set_keyboard (1, 80, "", 1);
set_font (1)

}

shut_down_core ()

{
bred(0] = 0.8;
bgrn{0] = 0.8;
bblu(0] = 0.8;
define color_indices (&évwsurf, 0, 255, bred, bgrm, bblu);
terminate_device (KEYBOARD, 1);
deselect_view_surface (svwsurf);
terminate_view_surface (&vwsurf);
terminate_core();

}

int
getobjdat (filename)
char *filename;
{
int i, 3, k;
short vtmp, v1, v2, v3;
float ftmp, maxd, scale, offset(3]);

float x, y,» z, x0, y0, 20, length;

FILE *fptr;

if ((fptr = fopen(filename, "r")) == NULL) |
printf("Can’t open file: ts\n", filename):
return (1)
}
fscanf (fptr, "%d%d", é&nvert, énpoly);
if ((nvert > MAXVERT) || (npoly > MAXPOLY)) |
printf ("Too many object vertices or polygons\n");
return (2);
}
fscanf (fptr, "SERLRLRERLRE", tbbox[0]) [0), &bbox[0)[1], &bbox[1]{0],
sbbox[1][1), &bbox(2}{0), &bbox(2}[1]);
maxd = 0.0;
for (i = 0; 1 < 3; i++) {
offset[i) = (bbox{i][0] + bbox[il[1l]) / 2.0;
bbox[i] (0] -= offset(i];
bbox[i} (1] -= offset(il]:
if (bbox([i]1([0] > bbox[i]([1]) {
ftmp = bbox[i] {0];
bbox({i] {0] = bbox[i}[1]}:
bbox[i]) (1] = ftmp:
}
if (maxd < bbox[i][1})
maxd = bbox[1i][1]);
}
scale = 1000.0 / maxd:
for (i = 0; i < 3: i++) |
bbox[i] [0] *= scale;
bbox[i] [1] *= scale:

for (i = 0; i < nvert; i++) |

fscanf (fptr, "%fRf3f", &vertices[i] (O], &vertices (i) [1],
svertices[i]) [2]);

vertices[i) [0] = (vertices(i] (0] - offset([0]) * scale;
vertices([i] [1) (vertices[i]} {1] - offset([l]) * scale;
vertices{i) (2] (vertices(i) [2] - offset([2]) * scale;
normal (i) (0] = 0.0;
normal(i) (1] = 0.0;
normal[i)(2) = 0.0;
normalcount (i) 0;

ftoool

k = 0;
for (i = 0; 1 < npoly; i++) {
fscanf (fptr, "3%d", &npvert([i]);
if ((k + npvert(i]) > MAXPVERT) |
printf ("Too many polygon vertices\n"):
return (3);
}
pvertptr([i] = &pvert(k];
for (§J = 0; j < npvert(i]; 3++) |
fscanf (fptr, "%hd", &vtmp);

pvert [k++] = vtmp - 1;
}
planeq(i} [0) = planeq[i])[1] = planeq(i](2] = planeq(i][3] = 0.0;
vl = pvert[k - 1],
v2 = pvert(k - 2]:
v3 = pvert(k - 3}]:
for (3 = 0; 3J < 3; j++) |
planeq(i) [0] += -vertices[vl][1] *
(vertices([v2][2] - vertices([v3][2]);
planeq(i) (1] += -vertices(v1)[0] *
(vertices([v3)[2] - vertices([v2]I[2]);
planeq(i] [2] += -vertices[vl]{0] *
(vertices[v2]([1] - vertices{v3]([1l]):
planeqg(i] (3] += -vertices(vl] [0] *
((vertices([v3][1] * vertices[v2][2])) -
(vertices(v2][1] * vertices{[v3]([2])));
vemp = vl;
vl = v2;
v2 = v3;
v = vtmp;
}

/* The normal of this face points to the center of the object. */
/* if (planeq(i][3] > 0.0)
for (3 = 0; J < 3: 3++)
planeq(i][j) = -planeq(i](j); */

x = planeq(i][0]:

y = planeq(i][1l]:

z = planeg(i] (2]

length = sqrt(x * x + y *y + 2 * 2);
planeq(i) [0] /= length;

planeq(i] [1] /= length;

planeq(i] (2] /= length;

planeq(i) [3] /= length;

if (debug) {
printf("planeq(%d] : $f,%f,%£,%£\n", i, planeq(i] (0],
planeq(i] [1], planeq[i] (2], planeq(i)(3]);
}
for (3 = 1; j <= npvert[i]; j++) | /* accum normls */
vtmp = pvert(k - 3};
normal (vtmp) (0] += planeq(i]([0];
normal [vtmp] [1] += planeq[i][1];
normal [vtmp] [2] += planeq(i] (2]
normalcount [vtmp] ++;
}

for (i = 0; i < nvert; i++) {
normal[i]} [0] /= normalcount(i])’
normal[i}{1] /= normalcount(i):
normal(i]) (2] /= normalcount(i];

if (debug) |
printf("normal([%d] : %f,%f,%f\n", i, normal (i} [0],
normal{i){1], normal{i)[2]):
)
}
fclose(fptr):
return (0);
}

setvwpo (vx, vy, vz)

float vx, vy, vz:
{
int i;
float diag, del, objdist, near:

set_view_reference_point (vx, vy, vz);
set_view_plane_normal (-vx, -vy, -vz);
set_projection (PERSPECTIVE, 0., 0., 0.);
set_view_plane_distance(256.0);
if ((vx == 0.0) && (vz == 0.0))
set_view_up_3(0.0, 0.0, vy);
else
set_view_up_3(0.0, 1.0, 0.0);
set_window(-80.0, 80.0, -80.0, 80.0):
diag = 0.0;
for (i = 0; i < 3; i++) |
del = bbox([i][1] - bbox([i])(0];
diag += del * del;
}
diag = sqgrt(diag) / 2.0;
objdist = sqrt(vx * vx + vy * vy + vz * vz);
near = (diag >= objdist) ? objdist / 2.0 : objdist - diag:
set_view_depth(near, objdist + diag);
/*
* set_window_clipping (FALSE): set_front_plane_clipping (FALSE);
* set_back_plane_clipping (FALSE);
*/
set_viewport_3(.125,.874, 0.,.749, 0.0, 1.0);
}

static float invxform[4] (4]:
drawobj ()
{ -
int i;
float ' x, v, z, x0, y0, z0, length:
char ch;
bred[0] = 0.6;
bgrn[0] = 0.0;
bblu[0] = 0.6;
cred{0) = 0.6;
= 0,0

cgrn(0)

.

/*

}

void
norm

/*

cblu{0] = 0.6;
if (renderhue == () {

set_text_index(1l);

define_color_indices(&vwsurf, 0, 255, bred, bgrn, bblu);

} else |
set_text_index(1l):

define_color_indices (&vwsurf, 0, 255, cred, cgrn,

)

/* if (renderstyle && renderstyle < 3) */

for (i = 0; i < npoly; i++) {
cpindex (i) =

(ambient + diffuse * (planeq(il{0]

nly + planeq(i)(2] * nlz)) * 254.;

for (i = 0; 1 < nvert; i++) |
cindex[i]) =

(normal[i) (0] * nlx + normal(i]){1l)]

normal{i}[2] * nlz) * 254.:

if (cindex[i] < 4)
cindex[i] = 4;
if (cindex{i] > 248)
cindex(i] =
248;
}

/* inquire_inverse_composite_matrix(invxform); */

if (renderstyle == 3)

set_zbuffer_cut (evwsurf, xcut, zcut, 2);

else

set_zbuffer_cut (évwsurf, xcut, zcutl, 2); */

for (1 = 0; 1 < npoly:; i++) {

/* if ((visible(planeglil)) || (renderstyle == 0))

drawface (i)

lig(lgtx, lgty, lgtz)
float lgtx, lgty, lgtz;
float x0, y0, z0, length:

map_ndc_to_world_3(lgtx, lgty, lgtz, &nlx, &nly, &nlz);

map_ ndc to_ world 3(0.0, 0.0, 0.0, &x0,
printf("lgtx = &f : nlx = &f\n", lgtx,
printf("lgty = %f : nly = %f\n", lgty,
printf("lgtz = %f : nlz = $£f\n", lgtz,
x0 = 0.0;
y0 = 0.0;
20 = 0.0;

&y0, &z0);
nix - x0);
nly -WyQ):

nlz - zQ):

* nly +

*/

cblu);

* nlx + planeg{i] (1]

*/

x

lgtx -= x0;
lgty -= yO;
lgtz -= 20;
length = sqrt(lgtx * lgtx + lgty * lgty + lgtz * lgtz)
if (length != 0.0) {
nlx = lgtx / length;
nly = lgty / length;
nlz = lgtz / length:

}

int
visible (pln)
float plnll;
{
int i;
float c;
c=0.0;

for (i = 0; i < 4; i++)
c += invxform({2}![i] * pln(il;
return (¢ > 0.0});
}

drawface(p) int

p?
{
int i, j, ks
short *ptr;
float para = 215.0 / 255.0;

if (debug) {
printf(“"face : %d\n", p);
}
ptr = pvertptr(pl:
for (1 = 0; i < npvert[pl:; i++) |
j = *ptr++;
xlist[i] = vertices(]j)(0]):
ylist (i) = vertices(3][1]:
zlist (i) = vertices(]j)(2]:
if (renderstyle < 3) {
indxlist[i] = cindex{j]:
if (debug) {
printf ("vertices(¥d) : (%f,%f,%f) : indxlist = %d\n",
i, xlist([i), ylist(i), =zlist([i], indxlist(i)};
}
} else |
dxlist[i] = normal(3)(0];
dylist[i] = normal(j][1]: /* Phong */
dzlist[i] = normal(j](2];

if (renderstyle < 2) |
j = (cpindex(p] > 0) ? cpindex(p]l : 1:
4 = (3§ > 255) ? 255 : 3§;
/* j = (int) (para * (float) j) + 40; */
if (debug) {
printf("indxlist[%d] : %d\n", p, Jj):

)
if (renderhue) {
3 = 9> 2; /* if (3 > 62) J = 62; other colars */

if ('autodraw) |

if (debug) {

scanf ("%d", &3j):
} else

do |{

await_keyboard(0, 1, string, &i);

}
while (i == 0);

}
set_fill_index(j + renderhue * 64 - 63);
} else {
if (lautodraw) {
if (debug) {
scanf ("%4", &3);
} else
do {
await_keyboard(0, 1, string, &i);
}
while (i == 0);

}
set_fill index(j); /* gray colar */
)
} else if (renderstyle == 2) |{
set_vertex_indices(indxlist, npvert [p]) ¢

)
/* Gouraud */

else |
set_vertex_normals(dxlist, dylist, dzlist, npvert(pl):;

} /* Phong */

if (renderstyle == 0)

polyline_abs_3(xlist, ylist, zlist, npvert{pl): /* wireframe */

else
polygon_abs_3(xlist, ylist, zlist, npvert(pl):

)

static float maxvw, vwpp, maxvdim;
static float vlx, vby, vfz, vdx, vdy, vdz;
static float minleft, maxright, minbot, maxtop, minback, maxfront;

setvwpv{)

{
set_view_reference_point (0.0, 0.0, 0.0);

set_view_plane_normal (0.0, 0.0, -1.0);

set_view_plane_distance(0.0);
set_projection(PARALLEL, 0.0, 0.0, 1.0);
set_view_up 3(0.0, 1.0, 0.0);
set_window(0.0, 1023.0, 0.0, 767.0);
set_view_depth(0.0, 1.0);
set_window_clipping(FALSE);
set_viewport_3(0.0, 1., 0.0,.75, 0.0, 1.);
set_text_index(255);

}

void
blkscr ()
(
int i, 3:
static float x[4] = |
go., -80., -80., 80.
}:
static float yl4] = {
80., 80., -80., -80.
|
static float z[4] = |
0., 0., 0., O.
}:
static int n=4;

for (3 = 0; j < 900; J++) {
for (i = 0; 1 < 1152; 1 = i++) {
pr_put (screen, i, j, 1);
}
}
set_line_index(1);
set_£ill index(1l):;
set_linewidth(0.);
polygon_abs_2(x, y, n);

APPENDIX D: C PROGRAMS FOR IMAGE PROCESSING USING

THE 3M VOL VISION SYSTEM

;%* PROCRAM FT C - This program cajfculates the Fourier Transformation
of the input image.

Werittern by Chirs K Wu, Jun, 1987.

*/

#include <(stdio.h?

#include (math.h?>

#include (strings. h>

#include (ci. h?

#define SIZE 64

t#define M § -

extern vdlinit(),vdlterm();
extern long seci();

main(ac,av)

int ac;char *avl];

{

FILE *fopen(),*fpl, *xfp2 *fp3,*fpgd, *fp5;
char cmd(50),filerel507,€fileim{501];

int ulxl,ulytl;

int i,3i,ti,ti,nt;

float rebuf{SIZE]l,imbufl(SIZE],;

iftac!=s 2) {
printf("Usage: ‘%s filenameln”,avi(01);
printf("This program calculates the FT of the inputin®),
printf("image. The results are stored in the followingin");
printf(“files:\n");

printf("re_filename - the real part cf the FT\n");
printf("im_filename - the imaginary part of the FT\n");
exit(-1);

}

if (vdlinit() ¢ 0) (
printf("unable to initialize VDLAn");
exit(-1),;
3 .
sci(pinp, (COORD)Y1,0);
sci(pcop,(COORDY2,0.,1);
sci(pbuf,(COORDY2,-2,1);
sci(pwin, (COORD)Y1,-1);
sci(pwin, (COORD)1,0);
sci(pbuf,(COORDYZ2,-2,0);
printf("Due to the stack size limitation, the size of the image to be\n");
printf(“processed is restricted to 64xé64. \n\n");
Printf("Enter the coordinates of the upper left corner of picture : "),
scanf("%d %d"”,8ulxi, sulyl);
fpi=fopen("fttemp.re” K "w");
fpisfopen("fttemp.inmn",6 "w"),;
fpS=fopen("wu.pie”,"w");

/I*perform FFT to each row®/

for (i=zulyl;(ti=i-ulyi)(SIZE ;i++) (
for (j=ulxl;(timj-ului){(SIZE,j++) {
nt=ti+tj,;
imbutltjl=0;
rebuf(tjil=a(float)pwi(-1,nt)
*(float)(sci(pget,(COORD)3,(long)i,(long)i,1)+128);

h)
fwrite(rebuf 4,SIZE, tp3) .
fft2(rebuf,imbuf SIZE.M);
fwrite(rebuf,4,S1Z2E,fpl);
fwrite(imbuf,4,SIZE,fp2).;
)
fcleseifpl);fcloselfp2),;tclose(fpS);
sprintf cmd,"/d0/user/flipreal fttemp.re %d" ,SIZE);
system{cmi);
sprintf(cmd,“ldOIuserlfliproal fttemp. im %d",SIZE);
system(cmd);

/* perform FFT to each column *x/

fpi:fopen(“fttemp.re","r");
pr:fopen(”fttemp.1m","r");
sprintf(filere,"re_");
strncat(filere,avii], 10);
fp3=fopen(filere,"w");
sprintf(fileim,"im_");
gstrneat(fileim,av(1],10);
fpi=fopeni{fileim,"w");

for (i=0,i<(SI1ZE,;i++) (

fread(rebuf,d4,SIZE,fpl);

fresc(imbuf,4,51ZE,¢fp2),;

fft2i(rebuf, imbuf ,SIZE,M);
fwrite(rebuf,4,51ZE,.fp3);
fwrite(imbuf,4,SIZE, (pd);

}
f:lose(fpl);fclose(pr);fclose(tp3);tclose(qu);
sprintf(cmd,"ldOIuser!tllproaI t%hg %d",filere,SIZE);
system(cmd);
sprintf(cmd,"IGOIusnrlflipreal %e %d",fileim,SIZE);
system(cmd);
uynlink(“fttemp.re");
unlink(“fttemp.im"),
if (vdlterm()<0) (

printf(”"unable tp terminate VDLAnNn");

exiti=1),;

}
}
pwi(x,n)
int x,n;
{

int i,p=1;

Lif (n==0) return(l)};

else ¢
for (i=0;i<n;i++) p=p*x;
return(p);
}

(-4

J*SUBROUTINE FFTZ - Cooley-Turkey
Chri:s K. Wu.
* [
#include {(stdio . h>
#:nclude <(math h>
ftt2(x,y,n,m)
float *x,*xy; int n,m;
4
int i,ie,ia,i,k,1,1t,n1,n2;
float c,s, xt,yt;
double pi,wr[SlZ],witSiZ];
pi=6.28319l(doublc)n;
for(i=0;i{n;i++) (
wrlil=cos(pi*(double)i);
wilil=sin(pi*(double)i);
}
nZ=n;
for(i=0;i(m;i++) o
ni=n2;
n2=n2/2;
ie=n/nl;
ia=0;
for(j=0;3i¢(n2;i++) (
c=(floatiwrlial;
sa(float)wilial;
ja=ia+ie;
for(k=j,k¢(n;k=k+nl)
1=k+n2;
xt=xlkl-xf{11;
alkl=xCkl+xl1];
ytaylkl-yl[13;
yIlkI=ylkl+ylld;
xCll=c*xtes*yt;
ylll=cryt-s*xt;
}
)
]
/I*xdigit reverse counter*/
i=l;
for(i=1;i<n;i+sd
if (3>i) (
l=i=-1;
[i=j§=-1;
xtsxT113;
x(Itl=exCl1];
x(1l=xt;
xt=y[111;
yl11Jayl1ll;
y{llaxt;
)
kan/2;)
while (32k) ¢
jmi-k;
ksk/2;
)
j=jek;
}
return(Q);
}

radia-2¢ FE1

ai1gorfithm

/*
SUBROUTINE FLIPREAL-This routine flips the input flcating point
raster along the diagonal axis for the 2-D
FEFT algorithm.
written by Chris K. Wu
v/

ginx.ude (stdio h)

maintac,av) v
int ac,char *avll;
{

char temph(20],cmdl8013;
:nt size;
if (ae'!f=3) {
printf("Usage: %s raster size\n",avi01);
exit(-1);
3
size=atoi(avi21)/2;
sprintf(temph,”frtemp”),
dorotate¢av({il,temph,size’;
unlink(avi11),
sprintf(cmd,"renama frtemp %s",avlil11l);
gaystem{cmd)
exit(0),;

1l

¥ B
SUBROUTINE DOROTATE() -- Handle rotations of the raster file
/!
dorotate(raster,temph,size)
char “raster,*tenph; int size;
(
int i,73;
float bufi(3210441,but203230321,templs4],dt;
FILE xfopen(),xfp,*fpl; '
ftp=fopen(raster,"r");
for (i=0;i<size;i++) (
tread(bufilil,d,size,fp);
fread(buf2lil,d,size, fp);
]
fpl=fopen("rotemp”, " "w");
for(iz0;i¢(size;iees)
tor(jmiel;j¢(slza;j+ed { ' £

buf1ClilC3l=butilillid;
bufi(jilil=dt;
}
for (i=0;i(size;i+s)> {
fwrite(butl(il, 4, ,sizce, fpl);
twrite(buf2til,d, size,fpl);
}
for (i=0,i¢size;i+s+)
fread(bufilil,d,size,fp);
fread(buf2(il,4,size,fp);
}
fclosel(fp),;)
for(i=0,i'size,i+e)
for(j=iel ;ji(size, jse) (
dtsbuf20il{il;

buf2lilljl=buf2iiIlild;
buf2l3ilEil=dt,
}
for (i=0;i<{size;i++) {
fwrite(bufllil,qd,size,fpl);
fwrite{(buf2fil,d,size,ipi),
}
fcloseifpl).
= fr=fopen("rotemp","r");
for(i=0;i(size;i++)
fread(temp,d,size, fpi;
. fread(buf2Cil,d,size,),
}
for(i=0;i1¢(size;i++)
for(j=0;ij¢size,j++) (
dt=buft1liliil;
bufilillijl=buf2C0310i];
buf2(jllilsdt;
}
fclose(fp),;
fp=fopen("rctemp"," ")}
fpl=fopen(temph, "w");
for(i=C,i{size:i++) (
fread(temp,8,size, f2?;
fwrite'temp,4,s5ize,fpl);
fwrite(puf2fil,d,size,.fpl);
)
for(i=2;i¢size;i+e) {
fread(temp,8,size,fp);
for (j=0;35(size;j++) temp{jl=bufllillil,
fwrite(tempg, 8,size,£fpl);
}
fclose(fp),
feiloselfpl);
unilink("rotemp"?);
return(0);
)

/* PRCGRAM SPECTRUM.C - This program tales the cutputs from
the FT C program and creats a cata fije containing the
spectrum of tha image.

Writtarn by Chris K Wu, Jun, 1987
*

#include (stdic h?
#include <(math.h>
ginclude ¢(strings.h> ; v
#define SIZE 64
maintac,av)
int ac;,char *avl];
{
char filerelS50),fileimi30];
FTILE xfopen(), *fpl, *fp2, xfp3;
int {1,373
long iad(SIZE],;
float scale, fmax;
flozt rd{SIZEY,id{S1ZC],fadlSIZE];
double dad.
:f (agst=2) {
printf("Usage: %s fi.ename An",av(01),;
printf("filename-ocutput data filename from the FT program.\n");
printf(“The output data is storad in file sp_filename.\n");
exit(-1);
}
irax=(-128.),
sprintf(filere,"re_");
strncat(filere,avi11);
sprintf(fileim,"im_");
strncat(fileim,avi1]);
fpi=fopen(filere," "),
fp2=fopen ' fileim," r");
fp3afopen("sptemp", "w");
for(i=0,i<SIZE;i++)
fread(rd,4,312ZE,¢tp1),
fread(id,4,SIZE, fp2);
for(j=0,3i¢SIZE ,j++) {
dad=(double)(rdCjl*rdljl+idljl*idljl);
tadl{jl=(float)sqrt(dad),
if(fadltjl)>fmax) fmax=fadl3jl;
)
fwrite(fad,q4,SIZE, tp3); -
)
dad=(double) fmaxe+l . ;
scale=254 . /(tloat)log(dad),
fclose(fpl);fclose(fp2);fclose(tp3d),
sprintf(filere,"sp_");
strncat(filere,aviil);
fpl=fopen("sptemp","c");
tp2afopen(filere,"w");
tor(i=0,;i{SIZE;i++) (
fread(fad,4,SIZE. . fpl);
for(j=0,;,3<(SIZE,j++> (
dad=(double)fadljl+l ;
iad(;]-(long)(scale'(float)log(dad))—128;

hY
4

twritel(i1ad,q4,8I12ZE,tp2),;
)}

unlink("sptemp’),
exit(G),)
}

/* PROGRAM JIREATPIC.C - This program plots the spectrum of the
image on the monitor

Writtern Ey Chris K. Wu Jun, 1%87

% /

#include {(¢i h?
#include (stdio h>
kdefine SIZE 64

extern vdlinit(); .
extern long scit);
extern vdlterm(),

main(arje,argv,enve)

int argec;

char *argvli],*envpl1l,;

{

int 1,3,ti,tj,xs,ys5;

long buflSIZE];

FILE *fopen{(,*fp;

if Carge t'= 2) (
printf("Usage: %s sp_filename'n”, argvi0l),
exit(-1),;
}

if (vdlimit(y ¢ 0) (
fprintf(stderr,"unable to> initialize VDLAIn");
retuvrn(=-1),

)
¥s=121;
ys=121.

sci(pw:n, {COORDY. ,0:;
sci1(pcie, (COCRD:t,0);
sci(pbuf, (CCORDY2Z2,-2,0);
fp=fopeniargvilil,"c");
for(j=ys,Ctij=(j-ys)/Z)CSIZE,;j=3+2) {
fread(buf,q4,SI1ZZ,£fp);
for(i=ng,(tis(i-us1/2){(SIZE,;i=1+2) (
if(bufl{til»127) bufltil=i27;
ifi{bufltil(-128) bufltil=(-128),
sci1(pput, (COORDY4 ,(long)i,{(longl)j, bufltil,l);
sci(pput, (COORD)4,(lcng)i,{(long)j+1 bufltil,1);
sci(pput, (COORDY3,{longri+t, (long)j,butltil,1);
s2i(pput,(COORD)4,(longl)i+!,(long)j+l bufltil,1);
} .
3 .
fclose(fp);
sci(pbuf,(COORDY2,-2,0);
sci(pwin, (COORD>Y>4,100,100,263,243);
sci(pout, (COORD)Y1,0),;
if (vdlterm() ¢ 0) (:
fprintf(stderr,"unable to terminate VDL\n"); !
return(-1),

+
’

/* PROGRAM PATTERN.C - This program identify 3 2-D geometry from
2 Jibrary of geometries. The geometric properties., area,
perimeter, and maximum radius, of the viewed geometry are
measured and used to check against the library set

Writtern by Chris K. Wu, May, 1987,
L

#include (stdio.h?

#include (math h>

#include <(¢i.h>}

extern vdlinit(),vdlterm();
extern long sci(},;

int window[4]),threshold,count;
int area_arr(i{0],peri__arr(10],mr_arr{103;
char name_arr{1010(3501],;

main()
{

long v,

int area,peri,mr,c;
int cx,cy,mx,my, tenmp;
double distsgqg;

if (vdlinit¢) ¢ 0) {
printf(“unable to initialize VDL")};
exit(-1);
}
printf("place any object inside view area to ");
printf('"determine the view windowin'");
scif(pdig, (COORD)1,1);
sci(pwin, (COORD)1,-1);
printf("perform learning process (y/n)? "),
while ((¢ = getchar()) !a 'y' §8 ¢ != 'Y' && ¢ !'a 'n' && ¢ !'= 'N')
getchar();
if (¢ =3 'y' !V ¢ == 'Y')
learn_sub (),
else
getdata();
printf("place the unknown geometry inside the view window\n");
start:
sci(pdig, (COORD)1,1);
sci(pthr, (COORD)1 ,(long)threshold);
"scitptrg, (COORDYO);
sci{(prng,(COORD)Y2,~128,0);
v = scitprpe, (COORD)O);
aream (int) v,
printf(“the area of the viewed geometry is %d" ,area);
printf(" pixels\n\n"),;
sci(pbin, (COORD)O0);
sci(pfrq, (COORD)YO);
sci(prng,(COORDY2,0,127);
v = sci(pcen, (COORD)0);
cy = (int)v / 512,
cx = (int)v - (cy*8512);
v = scil(prpe, (COORD)YO);

peri = (int) v,

printf(”"the perimeter of the viewed geometry is Ad" , peri),
printf(" pixels\nin");

v = sci{pmnx, (COORD)Y0);

my = (int)v/5312;

mKg = (int)v - my*512,

distsg = (cx-nmx)*(cx-mx) + (cy-my)*(cy-my);

mr = (int) sqrt(distsq);

v = gci(pmny, (COORD)O0);

my = {(int)v/S512;

nmx = (int)v - my*3512,;

distsqg = (¢cx-mxr*(cx-mx) + {(cy-my)*(cy-my);

temp = (int) sqrt(distsq);

if (temp > mr) mr=stemp;

v = sci(pmxx, (COORD)O0);

my = (intdv/512;

m¥ = (int)v - my*312,;

distsq = (cx-mx)*{(crR-mr) + (cy-my)*(cy-my);

temp = (int) sqrt(distsq);

if (temp > mr) mr=temp;

v = sci{pmxy, (COORD)Y0) ;

my = (int)v/512;

mx = (int)v - my*512,;

distsq = (¢x-mx)*(ex-mx) + (cy-myl)*(cy-my);

temp = {(int) sqrt(distsq);

if (temp > mr) mr=temp;

printf("the maximum radius of the viewed geometry is %d"”,mr);
printf("” pixels\ini\n"),;

recog(area, ,peri,mr);

printf("identify next unknown geometry (y/n)? "),
while ((¢ = getchar()) !'= 'y' && ¢ != 'Y' 8& ¢ != 'n' && ¢ !s 'N')

getchar();
if (¢ == 'y' !} ¢ == 'Y')
goto start;
else
if (vdlterm() < 0) (
printf("unable to terminate VDL\n'");
exit(-1);
)

/* subroutine to learn the geometric properties of
the target objects =/

learn_sub()
g

int {,¢,ex,cy,mx, my, temp;
long v;
double distsq;

printf("use the numerical key pad to move the ");
printf("cursor to determint the threshold valuein");
printf(”"press {(return’> key to exit\n");

sci(pers, (COORDYO0);

printf("enter the threshold value '),

scanf("%d" ,8§threshold);

printt("threshold value is set to %d\n",thresheold);
count=};

loop

printf("place the geometry inside the view window andin™),
printf("input the given name of the viewed geometry‘\n'),
scanf("%s" name_arcrlcountl);

sci(pdig,(COORD)1,1);

sci(pthr,(COORD)!,(long)threshold);

sci(pfrq, (COORD)YO);

scilprng,(COORD)Z2,-128,0);

v = sci(prpe, (COORD)YOD);

area_arrlcountl]l = (int) v;

printf(“the area of the viewed geometry is %d",area_arrlicountl);
printf(" pinels\in\n");

scitpbin, (CCOORD)>0);

sci(pfrq, (COORD)0);

sci(prng,(COORD)Y2,0,127);

v = sci(pcen, (COORD)YD);

cy = (intdv / 512,

cx = (int)v - (cy*512);

v = sci(prpec, (COORD)YO0);

peri_arr{countl] = (int) v;

nrintf("the perimeter of the viewed geometry is %d" ,peri_arrlcountl);
printf(" pixels\inin");

v = sci(pmnx, (COORD)YO0);

my = (int)v/312,;

mx = (int)v - my*S512;

distsq = (cx-myx)¥(cx-mx) + (cy-myl)*x(cy-nmy),;

nr_arctlcount] = (int) sqrt(distsqg),;

v = scil(pmny, (COORD)O);

my = (int)v/512;

mx = (int)v - my*x512;

distsqg = (cx-mx)*(ecx-mx) + (cy-myl*(cy-ny),;

temp = (int) sqrt(distsq);

if (temp Y mr_arrlcount]) mr_arrf{countl=temp;

v = sci(pmxx, (COORD)O);

mny = (int)v/S512Z;

mx = (int)v - my*512;

distsq = (cx-mx)*(cx-mx) + (cy-my)*(cy-my);

temp = (int) sqrt(distsqg),

if (temp > mr_arrlcountl]) mr_arrl{countl=temp,;

v = sci(pmxy, (COORD)O);

ny = (int)v/512,;

mx = (int)v - my=®512;

distsq = (cx-myx)X(cx-mx) « (cy-my)*(cy-my);

temp = (int) sqrt(distsq);

if (temp > mr_arri{cecountl) mr_arrlcountl=temp;

printf("“the maximum radius of the viewed geometry is %d" mr_arrlcountl);
printf{("” pixelsin\n');

printf("next geometry (y/n)? "),

while ((¢ = getchar()) != 'y' §& ¢ != 'Y' && ¢ !a 'n' &§ ¢ !'= 'N')

getchar();
if (¢ == 'y' 1 ¢ == 'Y') (
++count;
goto loop:
)
else
savedata();
return(0);
)

!* gubroutine to save data to file "pattern dat'" x/
savedsta()
{

int i;
FILE xfopen(),*fp,

ftp = fopen("/d0/user/pattern. dat", K "w"),

fprintf(fp, "%d\n",thresheold);

fprintf(fp,"%din",count);

for (i=1;id{count+!l,i++) {
fprintf(fp,"%s\n" name_arrlil);
fprintfCfp,"%d %d *%%d\n",area_arr(i),peri_arclil, mr_arclil);
}

felose(fp);

3

/% subroutine to read the geometric properties of the
learned objects from the data file */

getdata ()
{
int i;

FILE *fopen{), %fp,;

fp = fopen("/d0/user/pattern.dat"”, "¢"),;

fscanf(fp,"%d" ,&8threshold,;

fscanf(fp, "%d",&count);

for (f=1;id{count+!l,i++) {
fscant(fp,"%s" ,name_arrfil);
fscant(fp,"%d %d %d",8area_arr(il,éperi_arrlil,&mr_arzlil);
}

fclose(fp);

}

/* subroutine to identify the viewed geometry against
the library geometry */

recogl(area,peri, mr)
int area,peri,mr;
{

int {,c,rec_flag=0;
char Xrec_namel,*rec_namel;
double cdsq,cd,err,rec_earrl=1,rec_erc2;

“for (imi;i(count+l ;i++) (
cdsq = (doubledarea/(doubleldarea_arrlil;
cd = sqrt(cdsq); s
err = 0.5 % fabs(peri-cdvperi_arrlil)/(ecd*peri_arclil);
err = err + 0.5 » fabs(mr-mr_arrCil*cd)/(mr_arrlidrcd);
printf(“"match the viewed geometry to %s\n",name_arrlil);
printf(® %? 2¢f percent in difference\n\n",err*100.);
if (err ¢ 0 1)
if (rec_flag ‘= 0) {
if (err ¢ rec_errl) {

rec_err2 = rec_errl;

tec_namelZ = rec_namel;

rec_errl = err;

rec_name! = name_arcrlil,
}

else (
‘rec_errl = err;
rec_name2 = name_arrlil;
}

rec_flag = 2;

}

else

rec_errl = err;

rec_namei = name_arr{il];

rec_flag = {;

}
)
if (rec_flag !'= 0)
printf("\ninthe gecometry is recognized as \n\n *%% HKg *xx", rec_namel,,
printf(” with confidance of %5.1f percentin\n",({.-rec_ercri)*100);
if (rec_flag == 2)
printf(" %ax Hg Xxkx with confidance of %5 .1f percentinin”,
rec_name2, (1. .-rec_errc2)*100);
3 .
else {

printf("can't recognize the geometry. \n");
printf("want to store the gaometry into library (y/n)? "),
while ((¢ = getchar¢)) !'=a 'y' &§ ¢ !'=a 'Y' &§&§ ¢ !'= 'n' &§& ¢ !'= 'N')
if ¢ ¢ 2= 'y' 11 ¢ == 'Y') {
count ++;
printf("input the given name of the geometry\n");
scanf("%g" name_arrfcountl);
area_arrlcount]l = araa;
peri_arrl{count] = peri;
mr__arrf{count] = mr;
savedata();
.]
)
returnc0);
)

Tne macro 'XYANGLE.M'

win(50,70,350,450) _ /* set up the processing window */

dig() /* acquire imayge */

thr (-20) /* convert into binary image */
bin () /* pinary edge */

rng (110,127) /* specify the intensity range */
vamxx{) /* the rightmost pixel within the intensity range */
ry=v/512

rx=v-(ry*512)

v=mxy() /* the bottommost pixel */

by = v/512

bx=v-(by*512)

rnyg(110,127)

v=cen() /* locate the yravity center */
cy=v/5l2

cx=v-(cy*512)
print “"the gravity center is located at\n

print "x =

print cx

print “ \n"

print "y ="

print cy

print “\n"

den=rx-bx /* compute the orientation anyle */
num=by-ry

print "tan(theta) =" : i
print num

print “/"

print den

print “\n"

4
0

(a)
(b)

(c)

Digitatl picture
output from the 3M
system

(Black hexayox box
witn ez= 60")

Binary imayge
resulted from the
thresholding process
(tnr()) on picture
a.

Wireframe resulted
from the binary edge
detection process
(bin()) on picture
b.

Figura 1 Intermediate results of the macro 'xyangle.m'

Imai

Figure 2 Image space and the principal axes of area moment

of inertia about the gravity center

N92-24542

Report

1o
RESEARCH INSTITUTE FOR
COMPUTING AND INFORMATION SYSTEMS
(RICIS)

ON

COMPUTER GRAPHICS TESTBED TO SIMULATE AND TEST
VISION SYSTEMS FOR SPACE APPLICATIONS

BY

J. B. CHEATHAM

RICIS RESEARCH ACTIVITY AlL2
GRANT NCC9-16
MECHANICAL ENGINEERING AND MATERIALS SCIENCE DEPARTMENT
RICE UNIVERSITY
HOUSTON, TX 77251-1892
JULY 1991

Executive Summary

jectiv

The objectives of this project have shifted from computer graphics and vision systems
to the broader scope of applying concepts of artificial intelligence to robotics.
Specifically, the research is directed toward developing artificial neural networks,
expert systems and Laser Imaging techniques for autonomous space robots.

The statement of work is
1. Develop a Computer Graphics laser range finder simulator

2. Use laser imaging simulator to study use of artificial neural
networks for antonomous robotic navigation.

Overview:

Primarily as a result of our contacts with Dr. Timothy Cleghorn through this RICIS
project the emphasis of much of our robotics research has changed to research
directed toward artificial intelligence applications in robotics. We have become
interested in applications of CLIPS, NETS and Fuzzy Control.

A laser range finder simulator has been developed and used to study use of artificial
neural nets for robot navigation. CLIPS and NETS have worked their way into our
robotics courses and we are currently investigating an application of NETS in aero-
dynamics. During the past two years there have been 5 MS and 5 PhDs degrees
awarded to our students in robotics. Three MS and three PhD theses are directly
related to this project and are summarized in this report. Also a number of technical
papers and reports that have been written during the duration of this project are listed
at the end of this report.

Table of Contents

Executive Summary

Objectives

Overview

I. Introduction

O. Laser Imaging System Simulator

III. Application of Laser Range Finder to Robotic Navigation
IV. Applications of Connectionist Networks

1.
2.
3.
4.
3.

Path Planning and Obstacle Avoidance

Autonomous Robot Navigation

Redundant Manipulator Conﬁ'ol
Insertion Task

Application of NETS in Aerodynamics

V. Preliminary Studies of Fuzzy Logic Control Applications in Robotics

VI. Technical Papers, Reports and Theses

L. Introduction

This report describes recent robotic activities in Mechanical Engineering at Rice that
have been stimulated by RICIS Research Activity AL.2. This work has been directed
toward developing artificial neural networks, expert systems and Laser Imaging
techniques for autonomous space robotics applications. A computer graphics laser
range finder simulator developed by Wu has been used by Weiland and Norwood to
study use of artificial neural networks for path planning and obstacle avoidance.

The support provided by NASA/JSC Software Technology Branch through RICIS has
been leveraged significantly through support of 5 graduate students by the U. S. Army
(Captains Norwood, Weiland, Schuster, Atkinson and Hanusa).

Theses research by Wu, Norwood, Weiland and Schuster is summarized below. An
application of NETS in the advanced robotics lab course is described and the potential
for NETS in aerodynamics is discussed. Our recent interest in fuzzy logic control for
redundant manipulators and mobile robot navigation is mentioned. Finally a listing of
recent technical papers, reports and theses is given.

I1. Laser Imaging System Simulator

A computer graphics simulation was developed to permit emulation of laser range
scanners for use in our robotics research. Details of the simulation are contained in
the PhD thesis by Chris Wu (1990). A brief summary of his thesis is given in this
section.

The Laser Imaging Simulation Algorithm (LISA) provides simulated laser images
using the system parameters entered by the user. All parameters (such as hardware
specifications, output data size, and viewing parameters) are changeable to permit
emulation of the ERIM and Odetics laser scanners as well as future scanners. LISA
computes system characteristics such as signal-noise ratio, ambiguity interval and
viewing volume and then generates appropriate images.

Traditional computer graphics techniques that extract' Z-buffer data for distance
information would give an orthogonal view of the scene whereas a laser scanner
produces a radial measure. A straight line in the real world will appear curved in the
spherical world. Thus the simulation program emulates this radial measure by
emitting a ray corresponding to each rangel position. Each ray’s intersection with the
image is calculated and returned as a proportion of the ambiguity interval.

Reflectance values are calculated in the simulation program based on the object’s
orientation relative to the scanner. LISA generates artificial noise to simulate sources
of noise in real laser systems such as transmission noise, photon noise generated by
the photodetector, ambient noise, and noise in subsequent amplifiers.

After generating the range and reflectance data of a scene, the ambiguity interval
effect is obtained by dividing each range value by the ambiguity interval and storing
the remainder in the depth buffer. The depth and reflectance buffers are then
combined and saved to a file for further processing. The output data are arranged in
standard 16-bit format where the higher 8-bit stores the range data and the lower 8-bit
stores its corresponding reflectance value.

LISA has been used in robotics research by Wu, Norwood and Weiland. Their theses

are listed at the end of this report.
ITI.Application of Laser Range Finder to Robotic Navigation

This section summarizes research conducted by Peter Weiland (1989) for his MS
thesis. The laser ranger finder simulator discussed above was used by Weiland to
study the application of laser range data to autonomous robotic navigation.

A scanning laser was chosen for the sensory task because of its ability to readily
determine the spatial relationship of objects in the scene. It is not hampered by
illumination or the correspondence problem of vision systems. It readily displays
distance measurements to each point in the scene. In the navigation system proposed
by Weiland a preprocessor is used to enhance the laser data. It first screens the laser
data for missing points caused by specular reflection. It then scans the image for the
existence of ambiguity intervals and noise. Missing points and noise are corrected by
using a ’donut filter’. Ambiguity interval problems are corrected by the addition of
one cycle to the range value. After preprocessing, the data are sent to the processor
for conversion.

Actual conversion to the Cartesian representation is done in the processor stage.
Knowing the geometric configuration of the laser scanner, data points are converted to
an (x,y) plane. A corresponding elevation, z value, is entered into the (x,y) plane at
the appropriate position. The converted image requires additional procesing. There
are numerous missing data points caused by the varying data point density across the
image. It also has missing point regions caused by object occlusion. These missing
points must be filled in by the post processor before the image is usable by the
reasoning system.

Conversion enhancement is accomplished by the post processor. It fills in missing
points and frames the image. Shadow points are determined by finding the edges of
obstacles from the laser image. Edges are determined by range discontinuities.
Missing points caused by data density problems are filled in using the locus
algorithm.

Weiland’s research produced a perception process that effectively represents
simulated laser data in a form that permits cognition. This process is the conversion
of laser data into a top down, Cartesian elevation map of the sensed environment.
System applicability was demonstrated by navigating through the artificial robot
world using simulated laser data and the connectionist network navigation system
developed by Norwood and described below.

IV. Applications of Connectionist Networks

Some applications of connectionist networks for robotic path planning, autonomous
robot navigation, redundant manipulator control, autonomous insertion task and in
aerodynamics are described in this section.

IV -1. Path Planning and Obstacle Avoidance

This subsection summarizes the MS Thesis research of Chris Schuster (1990).
Automated path planning and obstacle avoidance have been the subject of intensive
research in recent times. Many efforts in the field of semiautonomous mobile-robotic
navigation involve using Artificial Intelligence search algorithms on a structured

environment to achieve either good or optimal paths. Other approaches, such as
incorporating Artificial Neural Networks, have also been explored. By implementing
a hybrid system using the parallel processing features of connectionist networks and
simple localized search techniques, good paths can be generated using only low-level
environmental sensory data. This system can negotiate structured two- and three-
dimensional grid environments from a start position to a goal, while avoiding all
obstacles. Major advantages of this method are that solution paths are good in a
global sense and path planning can be accomplished in real time if the system is
implemented in customized parallel-processing hardware.

The electronic hybrid network system developed by Schuster represents an original
method for constrained semi-autonomous robotic navigation control. It takes simple
binary environmental input, along with a start and goal location, and processes the
data through a connectionist network which provides a nodal ‘voltage potential’ look-
up table. The voltage potentials are analyzed by a second network which determines
the move direction based on an examination of the neighborhood around a given
current node (beginning with the start position). Finally, the system presents a
solution path based on a set of locally optimal steps.

This system exhibits some distinct advantages over the traditional approaches. Due to
the parallel architecture of the connectionist network, the system can be expected to
be much faster (and possibly more damage resistant) than Artificial Intelligence
search algorithms. This navigation system also has the flexibility to account for both
moving obstacles and a moving goal. This is accomplished by simply applying new
inputs to the connectionist network and reevaluating the path problem. Also,
assuming the hybrid network system is implemented in hardware, it does not require a
dedicated CPU/microcomputer to make it work and could conceivably be built right
into the sensory system and servomotors of a robot.

An example of a near term use for an expanded ‘Maze Machine’-type navigation
system is the control of a robotic delivery vehicle in a large factory. The
environment/floorplan would be fairly stable, however local sensors in the factory
could easily update the ‘maze’ database on board the robot through radio
communications. A human or central computer would assign the robot a task,
probably also by radio link. An example task could be to "take pallet #196 from point
A to point B". The navigation system on board the vehicle would then plan the path
from the current location to point A (the pick up point for the pallet) and then plan a
second path from A to B (the pallet drop off point). Other routines on board would
handle the pallet upload/download procedure, emergency stop procedures, etc.

There are disadvantages as well. First, the traditional Al procedure, regardless of
whether they find an optimal path or just feasible paths, are proven methods that can
be implemented relatively cheaply on microcomputers. The network system
presented here can not be implemented on microcomputers while keeping its parallel
architecture, however the sequential simulation AMAZ3D can be a valuable
alternative method, especially in feasibility tests to determine if a custom VLSI
network setup is warranted for a particular application. Since the Al approaches are
software based, they can be modified much more easily to represent different type/size
systems and environments. Also, because they are tried and proven procedures,
software is readily available for their implementation.

In summary, this electronic hybrid connectionist network system solves path
planning/obstacle avoidance problems for a grid-structured, two- or three-

dimensional environment. This navigation system provides good (often optimal) path
solutions based on a collection of locally optimal steps/moves found using the output
of the sensory analysis connectionist network. It operates using only low-level
(binary) descriptions of the environment which can be provided by a variety of current
and experimental sensory systems. The navigation machine would best be used in
combination with a computer and global sensory input systems. Possible applications
of this hybrid network system span from the home to industry to outer space.

IV -2. Autonomous Robot Navigation

This subsection is from the MS thesis of John Norwood (1989) and the Ph.D thesis of
Peter Weiland (1991). This research relates to that of Weiland that was discussed

earlier.

Robotic path planning and obstacle avoidance have been the subjects of intensive
research in recent years. Most solutions to these problems have been reached through
the use of traditional Artificial Intelligence search techniques. However, these
methods have proven inadequate when applied to highly unstructured or unknown
environments. By using an Artificial Neural Network, one can get near optimal paths
using only low level information about the scene. In this way, it is possible to
navigate from a start position to a goal position while avoiding all obstacles. Major
advantages of the method developed by Norwood are that the solution is very fast and
does not rely on any a priori knowledge of the robot’s environment. The system was
shown to be very effective for path generation when used in conjunction with the
simulated Laser Imaging System.

Norwood’s connectionist network model consists of a collection of individual nodes
each having N-1 inputs and two outputs. The first of these outputs is a transient
output and connects only to the inputs of the other nodes in the network. The second
output is the one of primary interests in the navigation problem. This output is an
artificial potential that is induced on a given node by both the goal node and the
obstacle nodes in the network, the former having a high positive potential and the
latter having a smaller negative potential. Once inputs, representing the robot’s
environment, are applied to the network, the output potentials emerge as the transient
outputs are propagated through the network. Navigation is then a matter of local
processing in the neighborhood of the robot until such time as the current node is
equivalent to the goal node.

This navigation scheme has been shown to be well suited to simulated unstructured
environments where precise information about the terrain and obstacles therein is not
generally available. This characteristic of the network is developed from the low-
level representation of the environment on which the network operates. The network
model can be applied wherever a top-down view can be easily generated from the data
provided by the Laser Imaging System Algorithm (LISA).

The navigation network is a general method. It has the flexibility to account for both
a moving goal and moving obstacles. This is done simply in hardware by applying
new inputs to the network. In software, one need only set a variable which is checked
at certain intervals to allow the looping structure to change. In this way, the new
environment can be evaluated, and the potentials changed to generate an appropriate
new path. Additionally, the network should generalize rather easily to a higher
dimension to allow one to generate obstacle free paths in a robot workspace.

Robotic navigation has been an area of intense research since the onset of mobile
robot development. The usefulness of mobile robots ultimately reside in their ability
to move and interact with the environment. Current approaches to robotic navigation
are primarily based on simulating intelligent, human-like behavior through the
intelligent system model processing cycle; sense, perceive, reason, act. Unlike these
methods, Weiland’s PhD thesis (1991) presents a navigation system based on
biological and behavioral principles which function in a stimulus-response manner.
Using connectionist architectures, a relationship between stimulus and response is
acquired through the learning of conceptual information pertaining to navigation. In
this research, the mammalian visual system provides a guide for the processing of
environmental stimulus. Simulated laser range data are processed in retinal patch size
elements by a cellular neural network. This network is designed to detect obstacle
existence for each path segment based on an invariant feature of range discontinuity.
Obstacle information is then mapped in binary format, indicating the traversable state
of the patch, to the system’s visual cortex. Response to this mapping is derived from
a hierarchical structure of back error propagation neural networks in which each
network has learned a particular navigational behavior; obstacle avoidance, wander,
and goal seeking. Outputs from these networks indicate appropriate motor response
for the environmental stimulus.

A simulation was develolped to evaluate the performance of this system by having a
simulated robot traverse an environment. The connectionist approach was verified
through system display of human-like navigational behavior for the simulation’s
environment. Advantages of the neural network approach were also demonstrated by
its processing speed and adaptability. Procedures are discussed for actual system
implementation in which cycle times of under one second are completely feasible.
Proposals for unsupervised leaming of navigational responses for environmental
stimulus are also made. Weiland’s research provides a foundation for our continuing
study of the connectionist approach to the problem of autonomous robot navigation.

IV -3. Redundant Manipulator Control

Norwood’s PhD thesis (1990) is concerned with the application of Artificial Neural
Networks to the problem of controlling a redundant manipulator.

Redudancy in robots is very much an open research area in the field of robotics. As
the tasks required of robots become more and more complex, the ability of robots to
perform satisfactorily in these applications must increase accordingly. Redundant
manipulators have a greater ability to perform difficult tasks, such as obstacle
avoidance, than non-redundant ones. In order to make use of this extra ability of
redundant robots, more effective control schemes must continue to be developed and
to this end, more and more researchers are looking to expand the body of knowledge
in this area. Norwood’s thesis addresses the problem of moving a redundant robot
within a defined workspace in the presence of obstacles. Additionally, criteria are
developed that may be applied to the robot to constrain the redundant equations.
Finally, a neural network solution to the redundant inverse kinematic problem is
presented. It is shown that the inverse kinematics can be developed through a network
architecture which provides accurate and fast solutions to a problem that is
computationally and structurally complex.

IV -4. Insertion Task

The insertion task, described here, was performed by students in our Advanced

Robotics Laboratory course last semester. It illustrates how results of our research
efforts are being transferred to the class room. Two-dimensional geometrical objects
consisting of a triangle, a rectangle and a circle are positioned at random locations in
the workspace of our RTX robot. The objective is to have the robotic system locate
the object specified by a voice command, retrieve the object and insert it into the
appropriate receptacle.

This exercise involves use of the TI Speech System, the 3M VDL Vision System,
NETS and a JR3 force/torque sensor. The perimeter and area data from the digitized
images is sent to the artificial neural network that classifies the objects. A small
circular rod located at the center of the area of the object to be retrieved, is grasped by
the two parallel jaws of the gripper and force control is used during actual insertion.

Currently this task is being extended to the use of our three fingered hand for grasping
the objects by their edges rather than using the rod at the C. G. Then insertion will be
attempted using finger control instead of arm motion only. This work is part of the
current thesis research by Paul Hanusa and Joe Grisham.

IV -5. Application of NETS in Aerodynamics

Presently wind tunnel experiments and computational fluid dynamics (CFD)
numerical modeling are the tools used by researchers and designers for understanding
fluid flow phenomena and exploring various aerodynamic designs. For example, in
order to predict the pressure distribution across an airfoil, one can use experimental
data or obtain numerical solutions of the Navier-Stokes equations that depend on
Mach number, Reynolds number, and angle of attack.

We believe that Artificial Neural Networks (ANN) have potential applications in
aerodynamics to complement and extend the traditional tools. As an example of such
an application, four sets of experimental data for chordwise coefficient of pressure
(Cp) distribution on the NACA 0012 airfoil were used to train a backpropagation
network using NETS with Mach number as input and Cp at 38 points on the airfoil as
output. The network was then tested at 5 other Mach numbers for which data were
available with excellent agreement between the network output and the experiments.
This work is being done in collaboration with Dr. Andrew Meade, a member of our
faculty who works with CFD research at Rice and had a NASA Faculty Fellowship at

NASA Langley during the summer of 1991.

V. Preliminary Studies of Fuzzy Logic Control Applications in Robotics

After discussions with Mr. Bob Lea and Dr. Jani of the Software Technology Branch
as NASA/ISC we have been convinced that there are opportunities for applying fuzzy
logic control in robotics. William Atkinson and Kevin Magee are two graduate
students in our program who are currently investigating ways to apply both artificial
neural nets and fuzzy control to redundant manipulators. Sarmad Adnan, a PhD
candidate, with the help of Alex Stewart, an undergraduate, is working toward
developing a camera tracking system that can have applications for use with fuzzy
control of a mobile robot.

Technical Papers, Reports, and Theses

Cheatham, J. B., and Norwood, J. D., "Robotic Path Planning and Obstacle Avoidance: A Neural
Network Approach”, Sth IASTED Int. Conf. Expert Systems and Neural Networks, Honolulu,
Aug. 16-18, 1989.

Cheatham, J. B., Weiland, P. L. and Norwood, J. D., "Framework for a Laser Navigation Sys-
tem", RICIS ’88 Symposium, Nov. 7-9, 1989.

Regalbuto, M. A., Cheatham, J. B. and Krouskop, T. A., "A Model-Based Graphics Interface for
Controlling a Semi-Autonomous Mobile Robot", 11th Annual Conference IEEE-EMBS °’89,
Seattle, Nov. 9-12, 1989.

Cheatham, J. B. and Adnan, S., "Kinematic Analysis and Trajectory Control of a Mobile Omni-
Directional Robot", First National Conference on Applied Mechanisms and Robotics, Cincin-
nati, Nov. 5-8, 1989.

Wuy, C. K, Weiland, P. L., and Cheatham, J. B., "A Computer Graphics Testbed for Developing
and Testing Laser Imaging Algorithms," SPIE/SPSE Symposium on Electronic Imaging, Santa
Clara, CA., Feb. 11-16, 1990. ’

Krouskop, T. A., Cheatham, J. B., Kachroo, P., and Barry, P. A., "Non-Invasive Measurement of
the Stiffness of Soft Tissue Using an Ultrasonic Perturbator,” 8th Annual Conference on
Biomedical Engineering Research in Houston, Feb. 15-16, 1990.

Norwood, J., Weiland, P. L., and Cheatham, J. B., "Robot Navigation From Local Sensory Data
Using Neural Networks," 5th Int. Service Robot Congress, Detroit, June 6, 1990.

Adnan, S., and Cheatham, J. B., "An Omnidirectional Platform to Simulate a Free-Flying
Illgggt," ISMCR ’90 - 1st Int. Sym. Measurement and Control in Robotics, NASA-JSC, June 21,

Chen, Y. C., Walker, LD., and Cheatham, J. B., "Grasping Analysis for a Multifingered Hand,"
Proceedings International Symposium on Measurement and Control in Robotics, NASA/ISC,
June 1990, Vol 3, pp J2-3-1-6.

Kachroo, P., Krouskop, T. A., Kachroo, A., Cheatham, J. B., and Barry, P., "Ultrasonic Tech-
nique and Artificial Intelligence: Differentiation of Tissue Types," Annual Fall Meeting of the
Biomedical Engineering Society, Blacksburg, VA, Oct. 23, 1990.

Regalbuto, M. A., Cheatham, J. B., and Krouskop, T. ,A., "A Framework for a Practical Mobile
Robotic Aid for the Severely Physically Disabled,” RESNA 13th Annual Conference, Washing-
ton, D.C., 1990.

Walker, 1. D., Cheatham, J. B. and Chen, Y. C,, "An Efficient Method for Computing the Force
Distribution of a Three-Fingered Grasp,” Proceedings SPIE Conference on Cooperative Intelli-
gent Robotics in Space, Boston, MA, November 1990.

Wu, C. K, Lin, Y. H,, and Cheatham, J. B., "Computer Graphics Modelling for Simulating and
Testing Robot Vision Systems," Journal of Modelling and Simulation, 10 (2), 67-70, 1990.

Chen, Y. C., Walker, I. D., and Cheatham, J. B., "A New Approach to Force Distribution and
Planning for Multifingered Grasp of Planar Objects,” submitted to Journal of Robotic Systems,
1990

Walker, I. D., Cheatham, J. B, and Chen, Y. C,, "An Intelligent Grasp Planning Strategy for

Robotic Hands," Proceedings SPIE International Symposium on Optical Engineering and Pho-
tonics in Aerospace Engineering, Orlando, FL, April 1991.

1-

Chen, Y. C., Walker, I. D, and Cheatham, J. B., "A New Approach to Force Distribution and
Planning for Multifingered Grasps of Solid Objects," Proceedings of the IEEE International
Conference on Robotics and Automation, Sacramento, CA, April 1991.

Chen, Y. C, Walker, 1. D., and Cheatham, J. B., "A New Vectorized Approach to Visualization
and Full Use of Kinematic Redundancy,” submitted to 1991 IEEE International Conference on

Robotics and Automation.

Chen, Y. C., Walker, L. D., and Cheatham, J. B., "Grasping Technology for Dextrous Remote
Manipulation," submitted to IDEEA One - The First International Design for Extreme Environ-
ments Assembly, University of Houston, November 12-15, 1991.

Adnan, S., Cheatham, J., Galicki, P., and Brock, J. "Telepresence for Remote Robotics Opera-
tions," submitted to IDEEA One - The First International Design for Extreme Environments
Assembly, University of Houston, November 12-15, 1991.

Oldham, T., Stokes, S., Venverlok, D., and Zearfoss, J. "Wheel for Omnidirectional Platform,"
Final Report, Senior Design Project, Mech 408, Rice University, April 26, 1990

Fessler, J., Jenkins, E., Miller, R., Peiffer, T., and Ragan, E., "Seven Degree of Freedom Robotic
Arm," Final Report, Senior Design Project, Mech 408, Rice University, April 20, 1990.

Ducceschi, L., Matthews, M., O’Connell, S., and Yuan, L. "The Rice Four-Fingered Dextrous
Robotic Hand," Final Report, Senior Design Project, Mech 408, Rice University, April 19, 1991.

Bartosh, B., Boncimino, G., Caldinell, T., Kirkpatrick, D., and Shampine, R., "Four Degree of
Freedonll Robotic Wrist," Final Report, Senior Design Project, Mech 408, Rice University, April
19, 1991. _

Recent Theses Supervised

Paul B. Fisher. "Development of Sensors and Algorithms for Automating Robotic Grasping,”
~ M.S. Thesis in Mechanical Engineering, June 1988.

Sarmad Adnan. "Kinematic Analysis and Trajectory Control of the Rice Omni-directional
Mobile Robot,"” M.S. Thesis in Mechanical Engineering, April 1989.

Peter Weiland. "Use of Laser Scanning Rangefinders for Autonomous Robotic Navigation,"
M.S. Thesis in Mechanical Engineering, May 1989.

John Norwood. "Robotic Path Planning and Obstacle Avoidance: A Neural Network Approach,”
M.S. Thesis in Mechanical Engineering, May 1989.

Chris K. Wu, "The Use of Laser Imaging System for Automated Vehicle Guidance and Space
Servicing Tasks," PhD Thesis in Mechanical Engineering, April 1990.

Michael A. Regalbuto, "A Semi-Autonomous Mobile Robot/Teleoperator with Applications as
an Aid for Severely Handicapped People,” PhD Thesis in Mechanical Engineering, January
1990.

Pushkin Kachroo, "UIirasonic Technique and Artificial Intelligence: Differentiation of Tissue
Types," M.S. Thesis in Mechanical Engineering, May 1990.

Christopher E. Schuster, "A Path Planning and Obstacle Avoidance Hybrid System Using a Con-
nectionist Network," M.S. Thesis in Mechanical Engineering, June 1990.

John David Norwood, "A Neural Network Approach to the Robot Inverse Kinematic Problem in
the Presence of Obstacles,” Ph.D Thesis in Mechanical Engineering, December 1990.

2

Peter L. Weiland, "A Connectionist Approach to Autonomous Robotic Navigation:" Ph.D Thesis
in Mechanical Engineering, January 1991.

William Thomas Atkinson, "Remote Control of a Robotic Arm Through Speaker-Dependent
Isolated-Word Speech Recognition,” MS Thesis in Mechanical Engineering, February 1991.

Yu-Che Chen, "A New Method for Solving the Kinematics of Multifingered Grasping and Gen-

eral Redundant Manipulators -- A Task Oriented Approach," Ph.D. Thesis in Mechanical
Engineering, April 1991.

-3-

N92-24543 REPORT

T0

RESEARCH INSTITUTE FOR
COMPUTING AND INFORMATION SYSTMES

(RICIS)

ON

RESEARCH ACTIVITY AI.2

COMPUTER GRAPHICS TESTBED TO SIMULATE AND TEST
VISION SYSTEMS FOR SPACE APPLICATIONS

By

J. B. CHEATHAM

CONTRACT NCCS-16
MECHANICAL ENGINEERING AND MATERIALS SCIENCE DEPARTMENT
RICE UNIVERSITY
HOUSTON, TX 77251-1892
MARCH 1990

RICIS RESEARCH ACTIVITY AlL.2

Computer Graphics Testbed to Simulate and
Test Vision Systems for Space Applications

by
J. B. Cheatham

The major objective of this research activity has shifted from
computer graphics and vision systems to the broader scope of applying
concepts of artificial intelligence to robotics. Specificially, the
research is directed toward developing Artificial Neural Networks,
Expert Systems and Laser Imaging Technigues for Autonomous Space Robots.

This activity is being conducted by Wu, Chen, Norwood, Weiland,
Schuster and Atkinson, who are Mechanical Engineering graduate students
at Rice, and it 1is directed by Professor John Cheatham. Major
accomplishments have been reported in technical papers and two M.S, and
one Ph.D. thesis. A computer graphics simulator for laser imaging
systems has been developed by Chris Wu as part of his Ph.D. research,
This simulator has been utilized in research by Peter Weiland to provide
a top-down map of the environment from laser range data. John Norwood
has applied potential theory for obstacle avoidaﬁce and developed a
network for path planning using the representation of the environment
provided by Weiland's research.

Weiland and Norwood are extending their research while working
toward Ph.D. degrees. This effort is now being directed toward direct
interpretation of laser imaging data using an Artificial Neural Network
and extension of the robot navigation to three dimensions. Work is also
aimed at using an Artificial Neural Network for control of a 7dof
redundant manipulator with three 3dof fingers. It is hoped that this
research will be of some assistance to the NASA robotic activities

related to the Space Station and to exploration of the moon and Mars.

Thesis Resulting from Research Activity AI.2

Peter Weiland. "Use of Laser Scanning Rangefinders for Autonomous
Robotic Navigation", M.S. Thesis 1in Mechanical Engineering, Rice
University, May 1989,

John Norwood. "Robotic Path Planning and Obstacle Avoidance: A Neural
Network Approach", M.S. Thesis in Mechanical Engineering, Rice
University, May 1989,

Chris K. Wu., "The Use of Laser Imaging System for Automated Vehicle

Guidance and Space Servicing Tasks", Ph.D, Thesis in Mechanical
Engineering, Rice University, January 1990.

Recent Technical Papers

Chris K., Wu, Peter L., Weiland and John B, Cheatham. "A Computer
Graphics Testbed for Developing and Testing Laser Imaging
Algorithms", 1990 SPIE/SPSE Symposium on Electronic Imaging Science &
Technology, Santa Clara, California, February 1990,

Peter L. Weiland, John D. Norwood and J.B. Cheatham, Jr. "Robotic
Navigation from Local Sensory Data Using Neural Networks", 1990
International Automation Conference, Detroit, Michigan, June 1990.

C. K. Wu, J. B. Cheatham, Y. H, Lin and T. F. Cleghorn, "Computer
Graphics Modelling for Simulating and Testing Robot Vision Systems”,
to be published in Journal of Simulation and Modelling,

